✔️ ️OpenCV在DNN模块中提供了基于残差SSD网络训练的人脸检测模型,该模型分别提供了tensorflow版本,caffe版本,torch版本模型文件。
✔️ 其中tensorflow版本的模型做了更加进一步的压缩优化,大小只有2MB左右,非常适合移植到移动端使用,实现人脸检测功能,而caffe版本的是fp16的浮点数模型,精准度更好。
✔️ 对比传统人脸检测,同样一张图像,在OpenCV HAAR与LBP级联检测器中必须通过不断调整参数才可以检测出全部人脸,而通过使用该模型,基本在Python语言中基于OpenCV后台的推断,在25毫秒均可以检测出结果,网络支持输入size大小为300x300。
import cv2
model_bin = "../model/face_detector/opencv_face_detector_uint8.pb";
config_text = "../model/face_detector/opencv_face_detector.pbtxt";
# load tensorflow model
net = cv2.dnn.readNetFromTensorflow(model_bin, config=config_text)
image = cv2.imread("people.jpg")
h = image.shape[0]
w = image.shape[1]
# 人脸检测
blobImage = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False);
net.setInput(blobImage)
Out = net.forward()
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
cv2.putText(image, label, (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# 绘制检测矩形
for detection in Out[0,0,:,:]:
score = float(detection[2])
objIndex = int(detection[1])
if score > 0.5:
left = detection[3]*w
top = detection[4]*h
right = detection[5]*w
bottom = detection[6]*h
# 绘制
cv2.rectangle(image, (int(left), int(top)), (int(right), int(bottom)), (255, 0, 0), thickness=2)
cv2.putText(image, "score:%.2f"%score, (int(left), int(top)-1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
cv2.imshow('demo', image)
输出