-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathopencv_104.py
71 lines (61 loc) · 2.27 KB
/
opencv_104.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import cv2 as cv
import os
import numpy as np
# 把目标图放在64x128的灰色图片中间,方便计算描述子
def get_hog_descriptor(image):
hog = cv.HOGDescriptor()
h, w = image.shape[:2]
rate = 64 / w
image = cv.resize(image, (64, np.int(rate*h)))
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
bg = np.zeros((128, 64), dtype=np.uint8)
bg[:,:] = 127
h, w = gray.shape
dy = (128 - h) // 2
bg[dy:h+dy,:] = gray
fv = hog.compute(bg, winStride=(8, 8), padding=(0, 0))
return fv
def get_data(train_data, labels, path, lableType):
for file_name in os.listdir(path):
img_dir = os.path.join(path, file_name)
img = cv.imread(img_dir)
hog_desc = get_hog_descriptor(img)
one_fv = np.zeros([len(hog_desc)], dtype=np.float32)
for i in range(len(hog_desc)):
one_fv[i] = hog_desc[i][0]
train_data.append(one_fv)
labels.append(lableType)
return train_data, labels
def get_dataset(pdir, ndir):
train_data = []
labels = []
train_data, labels = get_data(train_data, labels, pdir, lableType=1)
train_data, labels = get_data(train_data, labels, ndir, lableType=-1)
return np.array(train_data, dtype=np.float32), np.array(labels, dtype=np.int32)
def svm_train(positive_dir, negative_dir):
svm = cv.ml.SVM_create()
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setType(cv.ml.SVM_C_SVC)
svm.setC(2.67)
svm.setGamma(5.383)
trainData, responses = get_dataset(positive_dir, negative_dir)
responses = np.reshape(responses, [-1, 1])
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
svm.save('svm_data.dat')
def elec_detect(image):
hog_desc = get_hog_descriptor(test_img)
print(len(hog_desc))
one_fv = np.zeros([len(hog_desc)], dtype=np.float32)
for i in range(len(hog_desc)):
one_fv[i] = hog_desc[i][0]
one_fv = np.reshape(one_fv, [-1, len(hog_desc)])
print(len(one_fv), len(one_fv[0]))
svm = cv.ml.SVM_load('svm_data.dat')
result = svm.predict(one_fv)[1]
print(result)
if __name__ == '__main__':
#svm_train("D:/vcprojects/dataset/elec_watch/positive/", "D:/vcprojects/dataset/elec_watch/negative/")
# cv.waitKey(0)
test_img = cv.imread("test.jpg")
elec_detect(test_img)
#cv.destroyAllWindows()