-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
301 lines (236 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import argparse
import random
from data_loader import load_data
from citation_networks import load_citation_network_halftrain
from model import GCN
from utils import *
class Experiment:
def __init__(self):
super(Experiment, self).__init__()
def get_loss_fixed_adj(self, model, mask, features, labels):
logits = model(features)
logp = F.log_softmax(logits, 1)
loss = F.nll_loss(logp[mask], labels[mask], reduction='mean')
accu = accuracy(logp[mask], labels[mask])
return loss, accu
def half_val_as_train(self, val_mask, train_mask):
val_size = np.count_nonzero(val_mask)
counter = 0
for i in range(len(val_mask)):
if val_mask[i] and counter < val_size / 2:
counter += 1
val_mask[i] = False
train_mask[i] = True
return val_mask, train_mask
def GCN_KNN(self, args):
if args.half_train:
print("Using half of labeled nodes for training!")
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_citation_network_halftrain(args.dataset)
else:
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
Adj = torch.from_numpy(nearest_neighbors(features, args.k, args.knn_metric)).cuda()
Adj = normalize(Adj, args.normalization, args.sparse)
if torch.cuda.is_available():
features = features.cuda()
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
test_accu = []
for trial in range(args.ntrials):
model = GCN(in_channels=nfeats, hidden_channels=args.hidden, out_channels=nclasses, num_layers=args.nlayers,
dropout=args.dropout2, dropout_adj=args.dropout_adj2, Adj=Adj, sparse=args.sparse)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.w_decay)
best_test_accu = 0
counter = 0
if torch.cuda.is_available():
model = model.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
for epoch in range(1, args.epochs + 1):
model.train()
loss, accu = self.get_loss_fixed_adj(model, train_mask, features, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 1 == 0:
with torch.no_grad():
model.eval()
test_loss_, test_accu_ = self.get_loss_fixed_adj(model, test_mask, features, labels)
if epoch % 100 == 0:
print("Epoch {:04d}: Test Loss {:.4f}, Test Accuracy {:.4f}".format(epoch, test_loss_, test_accu_))
if test_accu_ > best_test_accu:
counter = 0
best_test_accu = test_accu_
else:
counter += 1
if counter >= args.patience:
break
with torch.no_grad():
model.eval()
print("*******************************")
print("Trial {:02d}: test accuracy {:.4f}".format(trial, best_test_accu))
print("*******************************")
test_accu.append(best_test_accu.item())
print(test_accu)
print("std of test accuracy", np.std(test_accu) * 100)
print("average of test accuracy", np.mean(test_accu) * 100)
def GCN_KNN_U(self, args):
if args.half_train:
print("Using half of labeled nodes for training!")
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_citation_network_halftrain(args.dataset)
else:
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
Adj = torch.from_numpy(nearest_neighbors(features, args.k, args.knn_metric)).cuda()
if torch.cuda.is_available():
features = features.cuda()
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
CUR_C = Adj.clone()[:, train_mask]
row_mask = torch.sum(CUR_C, dim=1) > 0
asy_similarities = cal_similarity_graph(features, features[train_mask, :])
asy_similarities = top_k(asy_similarities, args.klabel)
asy_similarities[train_mask, :] = 0.0 # Empirically, we found that train_mask works better!!
# asy_similarities[row_mask, :] = 0.0
Adj[:, train_mask] = Adj[:, train_mask] + args.alpha * asy_similarities
Adj = normalize(Adj, args.normalization, args.sparse)
test_accu = []
for trial in range(args.ntrials):
model = GCN(in_channels=nfeats, hidden_channels=args.hidden, out_channels=nclasses, num_layers=args.nlayers,
dropout=args.dropout2, dropout_adj=args.dropout_adj2, Adj=Adj, sparse=args.sparse)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.w_decay)
best_test_accu = 0
counter = 0
if torch.cuda.is_available():
model = model.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
for epoch in range(1, args.epochs + 1):
model.train()
loss, accu = self.get_loss_fixed_adj(model, train_mask, features, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 1 == 0:
with torch.no_grad():
model.eval()
test_loss_, test_accu_ = self.get_loss_fixed_adj(model, test_mask, features, labels)
if epoch % 100 == 0:
print("Epoch {:04d}: Test Loss {:.4f}, Test Accuracy {:.4f}".format(epoch, test_loss_, test_accu_))
if test_accu_ > best_test_accu:
counter = 0
best_test_accu = test_accu_
else:
counter += 1
if counter >= args.patience:
break
with torch.no_grad():
model.eval()
print("*******************************")
print("Trial {:02d}: test accuracy {:.4f}".format(trial, best_test_accu))
print("*******************************")
test_accu.append(best_test_accu.item())
print(test_accu)
print("std of test accuracy", np.std(test_accu) * 100)
print("average of test accuracy", np.mean(test_accu) * 100)
def GCN_KNN_R(self, args):
if args.half_train:
print("Using half of labeled nodes for training!")
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_citation_network_halftrain(args.dataset)
else:
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
Adj = torch.from_numpy(nearest_neighbors(features, args.k, args.knn_metric)).cuda()
if torch.cuda.is_available():
features = features.cuda()
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
asy_similarities = cal_similarity_graph(features, features[train_mask, :])
asy_similarities = top_k(asy_similarities, args.klabel)
Adj[:, train_mask] = Adj[:, train_mask] + args.alpha * asy_similarities
Adj = normalize(Adj, args.normalization, args.sparse)
test_accu = []
for trial in range(args.ntrials):
model = GCN(in_channels=nfeats, hidden_channels=args.hidden, out_channels=nclasses, num_layers=args.nlayers,
dropout=args.dropout2, dropout_adj=args.dropout_adj2, Adj=Adj, sparse=args.sparse)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.w_decay)
best_test_accu = 0
counter = 0
if torch.cuda.is_available():
model = model.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
for epoch in range(1, args.epochs + 1):
model.train()
loss, accu = self.get_loss_fixed_adj(model, train_mask, features, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 1 == 0:
with torch.no_grad():
model.eval()
test_loss_, test_accu_ = self.get_loss_fixed_adj(model, test_mask, features, labels)
if epoch % 100 == 0:
print("Epoch {:04d}: Test Loss {:.4f}, Test Accuracy {:.4f}".format(epoch, test_loss_, test_accu_))
if test_accu_ > best_test_accu:
counter = 0
best_test_accu = test_accu_
else:
counter += 1
if counter >= args.patience:
break
with torch.no_grad():
model.eval()
print("Trial {:02d}: test accuracy {:.4f}".format(trial, best_test_accu))
test_accu.append(best_test_accu.item())
print(test_accu)
print("std of test accuracy", np.std(test_accu) * 100)
print("average of test accuracy", np.mean(test_accu) * 100)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-dataset', type=str, default='pubmed', help='See choices',
choices=['cora', 'citeseer', 'pubmed', 'ogbn-arxiv'])
parser.add_argument('-ntrials', type=int, default=5, help='Number of trials')
parser.add_argument('-epochs', type=int, default=2000, help='Number of epochs to train.')
parser.add_argument('-lr', type=float, default=0.01, help='Initial learning rate.')
parser.add_argument('-w_decay', type=float, default=0.0005, help='Weight decay (L2 loss on parameters).')
parser.add_argument('-hidden', type=int, default=32, help='Number of hidden units.')
parser.add_argument('-nlayers', type=int, default=2, help='#layers')
parser.add_argument('-k', type=int, default=15, help='k for initializing with knn')
parser.add_argument('-knn_metric', type=str, default='cosine', help='See choices', choices=['cosine', 'minkowski'])
parser.add_argument('-half_val_as_train', type=int, default=0, help='use first half of validation for training')
parser.add_argument('-half_train', type=int, default=0, help='use half of labeled nodes for training')
parser.add_argument('-normalization', type=str, default='sym')
parser.add_argument('-sparse', type=int, default=0)
parser.add_argument('-patience', type=int, default=3000, help='patience for early stopping')
parser.add_argument('-method', type=str, default='GCN_KNN', help='See choices',
choices=['GCN_KNN', 'GCN_KNN_U', 'GCN_KNN_R'])
experiment = Experiment()
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
parser.add_argument('-dropout2', type=float, default=0.5, help='Dropout rate in GCN.')
parser.add_argument('-dropout_adj2', type=float, default=0., help='Dropout rate GCN.')
parser.add_argument('-alpha', type=float, default=100, help='control the contribution of asy and sys similarity')
parser.add_argument('-klabel', type=int, default=30, help='k_label for asymmetric similarity')
args = parser.parse_args()
if args.method == "GCN_KNN":
experiment.GCN_KNN(args)
elif args.method == "GCN_KNN_U":
experiment.GCN_KNN_U(args)
elif args.method == "GCN_KNN_R":
experiment.GCN_KNN_R(args)
print(args)