This page provides basic tutorials about the usage of mmdetection. For installation instructions, please see INSTALL.md.
We provide testing scripts to evaluate a whole dataset (COCO, PASCAL VOC, etc.), and also some high-level apis for easier integration to other projects.
- single GPU testing
- multiple GPU testing
- visualize detection results
You can use the following commands to test a dataset.
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]
# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
Optional arguments:
RESULT_FILE
: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.EVAL_METRICS
: Items to be evaluated on the results. Allowed values are:proposal_fast
,proposal
,bbox
,segm
,keypoints
.--show
: If specified, detection results will be ploted on the images and shown in a new window. (Only applicable for single GPU testing.)
Examples:
Assume that you have already downloaded the checkpoints to checkpoints/
.
- Test Faster R-CNN and show the results.
python tools/test.py configs/faster_rcnn_r50_fpn_1x.py \
checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth \
--show
- Test Mask R-CNN and evaluate the bbox and mask AP.
python tools/test.py configs/mask_rcnn_r50_fpn_1x.py \
checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
--out results.pkl --eval bbox segm
- Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.
./tools/dist_test.sh configs/mask_rcnn_r50_fpn_1x.py \
checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
8 --out results.pkl --eval bbox segm
Here is an example of building the model and test given images.
from mmdet.apis import init_detector, inference_detector, show_result
config_file = 'configs/faster_rcnn_r50_fpn_1x.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
show_result(img, result, model.CLASSES)
# test a list of images and write the results to image files
imgs = ['test1.jpg', 'test2.jpg']
for i, result in enumerate(inference_detector(model, imgs)):
show_result(imgs[i], result, model.CLASSES, out_file='result_{}.jpg'.format(i))
mmdetection implements distributed training and non-distributed training,
which uses MMDistributedDataParallel
and MMDataParallel
respectively.
All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir
in the config file.
*Important*: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.
python tools/train.py ${CONFIG_FILE}
If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}
.
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
Optional arguments are:
--validate
(strongly recommended): Perform evaluation at every k (default value is 1, which can be modified like this) epochs during the training.--work_dir ${WORK_DIR}
: Override the working directory specified in the config file.--resume_from ${CHECKPOINT_FILE}
: Resume from a previous checkpoint file.
Difference between resume_from
and load_from
:
resume_from
loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
load_from
only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.
If you run mmdetection on a cluster managed with slurm, you can just use the script slurm_train.sh
.
./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]
Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.
./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16
You can check slurm_train.sh for full arguments and environment variables.
If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like infiniband.
The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).
Here we show an example of adding a custom dataset of 5 classes, assuming it is also in COCO format.
In mmdet/datasets/my_dataset.py
:
from .coco import CocoDataset
class MyDataset(CocoDataset):
CLASSES = ('a', 'b', 'c', 'd', 'e')
In mmdet/datasets/__init__.py
:
from .my_dataset import MyDataset
Then you can use MyDataset
in config files, with the same API as CocoDataset.
It is also fine if you do not want to convert the annotation format to COCO or PASCAL format. Actually, we define a simple annotation format and all existing datasets are processed to be compatible with it, either online or offline.
The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field filename
(relative path), width
, height
for testing,
and an additional field ann
for training. ann
is also a dict containing at least 2 fields:
bboxes
and labels
, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use bboxes_ignore
and labels_ignore
to cover them.
Here is an example.
[
{
'filename': 'a.jpg',
'width': 1280,
'height': 720,
'ann': {
'bboxes': <np.ndarray, float32> (n, 4),
'labels': <np.ndarray, int64> (n, ),
'bboxes_ignore': <np.ndarray, float32> (k, 4),
'labels_ignore': <np.ndarray, int64> (k, ) (optional field)
}
},
...
]
There are two ways to work with custom datasets.
-
online conversion
You can write a new Dataset class inherited from
CustomDataset
, and overwrite two methodsload_annotations(self, ann_file)
andget_ann_info(self, idx)
, like CocoDataset and VOCDataset. -
offline conversion
You can convert the annotation format to the expected format above and save it to a pickle or json file, like pascal_voc.py. Then you can simply use
CustomDataset
.
We basically categorize model components into 4 types.
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
- neck: the component between backbones and heads, e.g., FPN, PAFPN.
- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.
Here we show how to develop new components with an example of MobileNet.
- Create a new file
mmdet/models/backbones/mobilenet.py
.
import torch.nn as nn
from ..registry import BACKBONES
@BACKBONES.register
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(x): # should return a tuple
pass
- Import the module in
mmdet/models/backbones/__init__.py
.
from .mobilenet import MobileNet
- Use it in your config file.
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
For more information on how it works, you can refer to TECHNICAL_DETAILS.md (TODO).