-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathapp.py
392 lines (342 loc) · 12.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Adapted from https://github.com/luosiallen/latent-consistency-model
from __future__ import annotations
import argparse
from functools import partial
import os
import random
import time
from omegaconf import OmegaConf
import gradio as gr
import numpy as np
try:
import intel_extension_for_pytorch as ipex
except:
pass
from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
import torch
import torchvision
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = """# T2V-Turbo 🚀
Our model is distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/).
T2V-Turbo learns a LoRA on top of the base model by aligning to the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
T2V-Turbo-v2 optimizes the training techniques by finetuning the full base model and further aligns to [CLIPScore](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)
T2V-Turbo trains on pure WebVid-10M data, whereas T2V-Turbo-v2 carufully optimizes different learning objectives with a mixutre of VidGen-1M and WebVid-10M data.
Moreover, T2V-Turbo-v2 supports to distill motion priors from the training videos.
[Project page for T2V-Turbo](https://t2v-turbo.github.io) 🥳
[Project page for T2V-Turbo-v2](https://t2v-turbo-v2.github.io) 🤓
"""
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA 😀</p>"
elif hasattr(torch, "xpu") and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU 🤓</p>"
else:
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
"""
Operation System Options:
If you are using MacOS, please set the following (device="mps") ;
If you are using Linux & Windows with Nvidia GPU, please set the device="cuda";
If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu";
"""
# device = "mps" # MacOS
# device = "xpu" # Intel Arc GPU
device = "cuda" # Linux & Windows
"""
DTYPE Options:
To reduce GPU memory you can set "DTYPE=torch.float16",
but image quality might be compromised
"""
DTYPE = torch.bfloat16
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
):
unique_name = str(uuid.uuid4()) + ".mp4"
unique_name = os.path.join(root_path, unique_name)
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
return unique_name
def save_videos(
video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
):
paths = []
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(
executor.map(
save_video,
video_array,
[profile] * len(video_array),
[metadata] * len(video_array),
[root_path] * len(video_array),
[fps] * len(video_array),
)
)
return paths[0]
def generate(
prompt: str,
seed: int = 0,
guidance_scale: float = 7.5,
percentage: float = 0.3,
num_inference_steps: int = 4,
num_frames: int = 16,
fps: int = 16,
randomize_seed: bool = False,
param_dtype="bf16",
motion_gs: float = 0.05,
use_motion_cond: bool = False,
progress=gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
if param_dtype == "bf16":
dtype = torch.bfloat16
unet.dtype = torch.bfloat16
elif param_dtype == "fp16":
dtype = torch.float16
unet.dtype = torch.float16
elif param_dtype == "fp32":
dtype = torch.float32
unet.dtype = torch.float32
else:
raise ValueError(f"Unknown dtype: {param_dtype}")
pipeline.unet.to(device, dtype)
pipeline.text_encoder.to(device, dtype)
pipeline.vae.to(device, dtype)
pipeline.to(device, dtype)
start_time = time.time()
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
motion_gs=motion_gs,
use_motion_cond=use_motion_cond,
percentage=percentage,
num_inference_steps=num_inference_steps,
lcm_origin_steps=200,
num_videos_per_prompt=1,
)
paths = save_videos(
result,
profile,
metadata={
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
},
fps=fps,
)
print(time.time() - start_time)
return paths, seed
examples = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"Robot dancing in times square.",
"Clown fish swimming through the coral reef.",
"Pikachu snowboarding.",
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
"A young woman with glasses is jogging in the park wearing a pink headband.",
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
]
if __name__ == "__main__":
# Add model name as parameter
parser = argparse.ArgumentParser(description="Gradio demo for T2V-Turbo.")
parser.add_argument(
"--unet_dir",
type=str,
default="output/vlcm_vc2_mixed_vid_gen_128k_bs3_percen_0p2_mgs_max_0p1/checkpoint-10000/unet.pt",
help="Directory of the UNet model",
)
parser.add_argument(
"--base_model_dir",
type=str,
default="model_cache/VideoCrafter2_model.ckpt",
help="Directory of the VideoCrafter2 checkpoint.",
)
parser.add_argument(
"--version",
required=True,
choices=["v1", "v2"],
help="Whether to use motion condition or not.",
)
parser.add_argument(
"--motion_gs",
default=0.05,
type=float,
help="Guidance scale for motion condition.",
)
args = parser.parse_args()
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_t2v = load_model_checkpoint(pretrained_t2v, args.base_model_dir)
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["use_checkpoint"] = False
unet_config["params"]["time_cond_proj_dim"] = 256
if args.version == "v2":
unet_config["params"]["motion_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
if "lora" in args.unet_dir:
unet.load_state_dict(
pretrained_t2v.model.diffusion_model.state_dict(), strict=False
)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
unet_replace_modules=["UNetModel"],
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path=args.unet_dir,
dropout=0.1,
r=64,
)
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
else:
unet.load_state_dict(torch.load(args.unet_dir, map_location=device))
unet.eval()
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result_video = gr.Video(
label="Generated Video", interactive=False, autoplay=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
dtype_choices = ["bf16", "fp16", "fp32"]
param_dtype = gr.Radio(
dtype_choices,
label="torch.dtype",
value=dtype_choices[0],
interactive=True,
info="To save GPU memory, use fp16 or bf16. For better quality, use fp32.",
)
with gr.Row():
percentage = gr.Slider(
label="Percentage of steps to apply motion guidance (v2 w/ MG only)",
minimum=0.0,
maximum=0.5,
step=0.05,
value=0.3,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=4,
maximum=50,
step=1,
value=8,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
)
fps = gr.Slider(
label="FPS",
minimum=8,
maximum=32,
step=4,
value=8,
)
use_motion_cond = args.version == "v1"
generate = partial(
generate, use_motion_cond=use_motion_cond, motion_gs=args.motion_gs
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result_video,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
guidance_scale,
percentage,
num_inference_steps,
num_frames,
fps,
randomize_seed,
param_dtype,
],
outputs=[result_video, seed],
api_name="run",
)
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch()