-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverlap_test_label.py
37 lines (27 loc) · 1.36 KB
/
overlap_test_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import matplotlib.pyplot as plt
import numpy as np
import os
from config import *
# Get the list of files in the directory
all_files = os.listdir(RESULT_PATH)
# Filter the files based on the extension
filtered_files = [file for file in all_files if file.endswith(".npy")]
# Create subplots for images and model details
fig, axs = plt.subplots(len(filtered_files), 3)
idx = 0
for file in filtered_files:
data = file[:-15]
created_mask = np.load(os.path.join(RESULT_PATH, file))
original_mask = np.load(os.path.join(DATA_PATH, TESTING_DATA_MASK_LOCATION[TESTING_DATA.index(data)], MASK_DEFINITION % 0000))
original_image = np.load(os.path.join(DATA_PATH, TESTING_DATA_LOCATION[TESTING_DATA.index(data)], IMAGE_DEFINITION % 0000) )
axs[idx, 0].imshow(np.squeeze(original_image), cmap="gray")
axs[idx, 0].set_title(data + " Original Image with Mask")
axs[idx, 0].imshow(np.squeeze(original_mask), cmap="jet", alpha=0.5)
axs[idx, 1].imshow(np.squeeze(original_image), cmap="gray")
axs[idx, 1].imshow(np.squeeze(created_mask), cmap="jet", alpha=0.5)
axs[idx, 1].set_title(data + " Original Image with Created Mask")
axs[idx, 2].imshow(np.squeeze(original_mask), cmap="gray")
axs[idx, 2].imshow(np.squeeze(created_mask), cmap="jet", alpha=0.5)
axs[idx, 2].set_title(data + " Original and Created Mask Overlap")
idx += 1
plt.show()