forked from DebeshJha/Doubleunet_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
126 lines (104 loc) · 4.18 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os, time
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from operator import add
import numpy as np
from glob import glob
import cv2
from tqdm import tqdm
import imageio
import torch
from model import build_doubleunet
from utils import create_dir, seeding
from utils import calculate_metrics, otsu_mask
from train import load_data
def process_mask(y_pred):
y_pred = y_pred[0].cpu().numpy()
y_pred = np.squeeze(y_pred, axis=0)
y_pred = y_pred > 0.5
y_pred = y_pred.astype(np.int32)
y_pred = y_pred * 255
y_pred = np.array(y_pred, dtype=np.uint8)
y_pred = np.expand_dims(y_pred, axis=-1)
y_pred = np.concatenate([y_pred, y_pred, y_pred], axis=2)
return y_pred
def print_score(metrics_score):
jaccard = metrics_score[0]/len(test_x)
f1 = metrics_score[1]/len(test_x)
recall = metrics_score[2]/len(test_x)
precision = metrics_score[3]/len(test_x)
acc = metrics_score[4]/len(test_x)
f2 = metrics_score[5]/len(test_x)
print(f"Jaccard: {jaccard:1.4f} - F1: {f1:1.4f} - Recall: {recall:1.4f} - Precision: {precision:1.4f} - Acc: {acc:1.4f} - F2: {f2:1.4f}")
def evaluate(model, save_path, test_x, test_y, size):
metrics_score_1 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
metrics_score_2 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
time_taken = []
for i, (x, y) in tqdm(enumerate(zip(test_x, test_y)), total=len(test_x)):
name = x.split("/")
name = f"{name[-3]}_{name[-1]}"
""" Image """
image = cv2.imread(x, cv2.IMREAD_COLOR)
image = cv2.resize(image, size)
save_img = image
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
image = image/255.0
image = image.astype(np.float32)
image = torch.from_numpy(image)
image = image.to(device)
""" Mask """
mask = cv2.imread(y, cv2.IMREAD_GRAYSCALE)
mask = cv2.resize(mask, size)
save_mask = mask
save_mask = np.expand_dims(save_mask, axis=-1)
save_mask = np.concatenate([save_mask, save_mask, save_mask], axis=2)
mask = np.expand_dims(mask, axis=0)
mask = np.expand_dims(mask, axis=0)
mask = mask.astype(np.float32)
mask = torch.from_numpy(mask)
mask = mask.to(device)
with torch.no_grad():
""" FPS calculation """
start_time = time.time()
y_pred1, y_pred2 = model(image)
end_time = time.time() - start_time
time_taken.append(end_time)
y_pred1 = torch.sigmoid(y_pred1)
y_pred2 = torch.sigmoid(y_pred2)
""" Evaluation metrics """
score_1 = calculate_metrics(mask, y_pred1)
metrics_score_1 = list(map(add, metrics_score_1, score_1))
score_2 = calculate_metrics(mask, y_pred2)
metrics_score_2 = list(map(add, metrics_score_2, score_2))
""" Predicted Mask """
y_pred1 = process_mask(y_pred1)
y_pred2 = process_mask(y_pred2)
""" Save the image - mask - pred """
line = np.ones((size[0], 10, 3)) * 255
cat_images = np.concatenate([save_img, line, save_mask, line, y_pred1, line, y_pred2], axis=1)
cv2.imwrite(f"{save_path}/joint/{name}", cat_images)
cv2.imwrite(f"{save_path}/mask1/{name}", y_pred1)
cv2.imwrite(f"{save_path}/mask2/{name}", y_pred2)
print_score(metrics_score_1)
print_score(metrics_score_2)
mean_time_taken = np.mean(time_taken)
mean_fps = 1/mean_time_taken
print("Mean FPS: ", mean_fps)
if __name__ == "__main__":
""" Seeding """
seeding(42)
""" Load the checkpoint """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = build_doubleunet()
model = model.to(device)
checkpoint_path = "files/checkpoint.pth"
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
model.eval()
""" Test dataset """
path = "../../Task03_Liver"
(train_x, train_y), (valid_x, valid_y), (test_x, test_y) = load_data(path)
save_path = f"results"
for item in ["mask1", "mask2", "joint"]:
create_dir(f"{save_path}/{item}")
size = (256, 256)
evaluate(model, save_path, test_x, test_y, size)