forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasic_GAN_Distributed.py
194 lines (160 loc) · 6.85 KB
/
Basic_GAN_Distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import os
import argparse
import cntk as C
import cntk.tests.test_utils
from timeit import default_timer as timer
cntk.tests.test_utils.set_device_from_pytest_env() # (only needed for our build system)
C.cntk_py.set_fixed_random_seed(1) # fix a random seed for CNTK components
#%matplotlib inline
isFast = True
# architectural parameters
g_input_dim = 100
g_hidden_dim = 128
g_output_dim = d_input_dim = 784
d_hidden_dim = 128
d_output_dim = 1
# Ensure the training data is generated and available for this tutorial
def create_reader(path, is_training, input_dim, label_dim):
deserializer = C.io.CTFDeserializer(
filename = path,
streams = C.io.StreamDefs(
labels_unused = C.io.StreamDef(field = 'labels', shape = label_dim, is_sparse = False),
features = C.io.StreamDef(field = 'features', shape = input_dim, is_sparse = False
)
)
)
return C.io.MinibatchSource(
deserializers = deserializer,
randomize = is_training,
max_sweeps = C.io.INFINITELY_REPEAT if is_training else 1
)
np.random.seed(123)
def noise_sample(num_samples):
return np.random.uniform(
low = -1.0,
high = 1.0,
size = [num_samples, g_input_dim]
).astype(np.float32)
def generator(z):
with C.layers.default_options(init = C.xavier()):
h1 = C.layers.Dense(g_hidden_dim, activation = C.relu)(z)
return C.layers.Dense(g_output_dim, activation = C.tanh)(h1)
def discriminator(x):
with C.layers.default_options(init = C.xavier()):
h1 = C.layers.Dense(d_hidden_dim, activation = C.relu)(x)
return C.layers.Dense(d_output_dim, activation = C.sigmoid)(h1)
# training config
minibatch_size = 1024
num_minibatches = 300 if isFast else 40000
lr = 0.00005
def build_graph(noise_shape, image_shape, G_progress_printer, D_progress_printer):
input_dynamic_axes = [C.Axis.default_batch_axis()]
Z = C.input_variable(noise_shape, dynamic_axes=input_dynamic_axes)
X_real = C.input_variable(image_shape, dynamic_axes=input_dynamic_axes)
X_real_scaled = 2*(X_real / 255.0) - 1.0
# Create the model function for the generator and discriminator models
X_fake = generator(Z)
D_real = discriminator(X_real_scaled)
D_fake = D_real.clone(
method = 'share',
substitutions = {X_real_scaled.output: X_fake.output}
)
# Create loss functions and configure optimazation algorithms
G_loss = 1.0 - C.log(D_fake)
D_loss = -(C.log(D_real) + C.log(1.0 - D_fake))
G_learner = C.fsadagrad(
parameters = X_fake.parameters,
lr = C.learning_parameter_schedule_per_sample(lr),
momentum = C.momentum_schedule_per_sample(0.9985724484938566)
)
D_learner = C.fsadagrad(
parameters = D_real.parameters,
lr = C.learning_parameter_schedule_per_sample(lr),
momentum = C.momentum_schedule_per_sample(0.9985724484938566)
)
DistG_learner = C.train.distributed.data_parallel_distributed_learner(G_learner)
# The following API marks a learner as the matric aggregator, which is used by
# the trainer to determine the training progress.
# It is required, only when more than one learner is provided to a *single* trainer.
# In this example, we use two trainers each with a single learner, so it
# is not required and automatically set by CNTK for each single learner. However, if you
# plan to use both learners with a single trainer, then it needs to be call before
# creating the trainer.
#DistG_learner.set_as_metric_aggregator()
DistD_learner = C.train.distributed.data_parallel_distributed_learner(D_learner)
# Instantiate the trainers
G_trainer = C.Trainer(
X_fake,
(G_loss, None),
DistG_learner,
G_progress_printer
)
D_trainer = C.Trainer(
D_real,
(D_loss, None),
DistD_learner,
D_progress_printer
)
return X_real, X_fake, Z, G_trainer, D_trainer
def train(reader_train):
k = 2
worker_rank = C.Communicator.rank()
# print out loss for each model for upto 50 times
print_frequency_mbsize = num_minibatches // 50
pp_G = C.logging.ProgressPrinter(print_frequency_mbsize, rank=worker_rank)
pp_D = C.logging.ProgressPrinter(print_frequency_mbsize * k, rank=worker_rank)
X_real, X_fake, Z, G_trainer, D_trainer = \
build_graph(g_input_dim, d_input_dim, pp_G, pp_D)
input_map = {X_real: reader_train.streams.features}
num_partitions = C.Communicator.num_workers()
worker_rank = C.Communicator.rank()
distributed_minibatch_size = minibatch_size // num_partitions
for train_step in range(num_minibatches):
# train the discriminator model for k steps
for gen_train_step in range(k):
Z_data = noise_sample(distributed_minibatch_size)
X_data = reader_train.next_minibatch(minibatch_size, input_map, num_data_partitions=num_partitions, partition_index=worker_rank)
if X_data[X_real].num_samples == Z_data.shape[0]:
batch_inputs = {X_real: X_data[X_real].data,
Z: Z_data}
D_trainer.train_minibatch(batch_inputs)
# train the generator model for a single step
Z_data = noise_sample(distributed_minibatch_size)
batch_inputs = {Z: Z_data}
G_trainer.train_minibatch(batch_inputs)
G_trainer_loss = G_trainer.previous_minibatch_loss_average
return Z, X_fake, G_trainer_loss
def plot_images(images, subplot_shape):
plt.style.use('ggplot')
fig, axes = plt.subplots(*subplot_shape)
for image, ax in zip(images, axes.flatten()):
ax.imshow(image.reshape(28, 28), vmin = 0, vmax = 1.0, cmap = 'gray')
ax.axis('off')
plt.show()
#mpiexec entrance
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-datadir', '--datadir')
args = vars(parser.parse_args())
data_found = False
train_file = os.path.join(args['datadir'], "Train-28x28_cntk_text.txt")
if os.path.isfile(train_file):
data_found = True
if not data_found:
raise ValueError("Please generate the data by completing CNTK 103 Part A")
worker_rank = C.Communicator.rank()
start = timer()
reader_train = create_reader(train_file, True, d_input_dim, label_dim=10)
G_input, G_output, G_trainer_loss = train(reader_train)
# Print the generator loss
C.Communicator.finalize()
end = timer()
print("Training loss of the generator at worker: {%d} is: {%f}, time taken is: {%d} seconds."%(worker_rank, G_trainer_loss, (end - start)))
# Please uncomment below to display the generated images.
#if worker_rank == 0:
# noise = noise_sample(36)
# images = G_output.eval({G_input: noise})
# plot_images(images, subplot_shape =[6, 6])