forked from jeromekelleher/discsim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validator.py
277 lines (252 loc) · 8.98 KB
/
validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""
Module used to validate the results of the simulations using various
means. These are not quite tests, since we don't have exact values
to check against, and everything is necessarily approximate.
"""
from __future__ import print_function
from __future__ import division
import sys
import time
import math
import numpy as np
import random
import multiprocessing
from matplotlib import ticker
from matplotlib import pyplot
import ercs
import discsim
import _discsim
class ErcsSingleLocusIdentitySimulator(ercs.Simulator):
"""
Class that calculates identity in state for genes separated by a range
of distances.
"""
def setup(self, num_points, max_distance, mutation_rate, accuracy_goal):
"""
Sets up the simulation so that we calculate identity at the specified
number of points, the maximum distance between points is
max_distance and mutation happens at the specified rate. Also
set the max_time attribute to reflect the specified accuracy_goal.
"""
self.mutation_rate = mutation_rate
self.distances = np.linspace(0, max_distance, num_points)
self.sample = [None, (0, 0)] + [(0, x) for x in self.distances]
self.max_time = math.log(accuracy_goal) / (-2 * mutation_rate)
def get_identity(self, seed):
"""
Returns the probability of identity at all distance classes
in this replicate.
"""
pi, tau = self.run(seed)
mc = ercs.MRCACalculator(pi[0])
n = len(self.distances)
F = [0.0 for j in range(n)]
for j in range(n):
mrca = mc.get_mrca(1, j + 2)
if mrca != 0:
F[j] = math.exp(-2 * self.mutation_rate * tau[0][mrca])
return F
class SingleLocusIdentitySimulator(discsim.Simulator):
"""
Class that calculates identity in state for genes separated by a range
of distances.
"""
def __init__(self, torus_diameter, distances, mutation_rate, accuracy_goal):
super(SingleLocusIdentitySimulator, self).__init__(torus_diameter)
self.__accuracy_goal = accuracy_goal
self.__mutation_rate = mutation_rate
self.__distances = distances
self.__max_time = math.log(accuracy_goal) / (-2 * mutation_rate)
self.sample = [None, (0, 0)] + [(0, x) for x in self.__distances]
def get_identity(self, seed):
"""
Returns the probability of identity at all distance classes
in this replicate.
"""
self.random_seed = seed
self.run(self.__max_time)
pi, tau = self.get_history()
# reset the simulation so we can get another replicate.
self.reset()
mc = ercs.MRCACalculator(pi[0])
n = len(self.__distances)
F = [0.0 for j in range(n)]
for j in range(n):
mrca = mc.get_mrca(1, j + 2)
if mrca != 0:
F[j] = math.exp(-2 * self.__mutation_rate * tau[0][mrca])
return F
def subprocess_identity_worker(t):
sim, seed = t
return sim.get_identity(seed)
def run_identity_replicates(sim, num_replicates, worker_pool):
args = [(sim, random.randint(1, 2**31)) for j in range(num_replicates)]
replicates = worker_pool.map(subprocess_identity_worker, args)
mean_identity = np.mean(np.array(replicates), axis=0)
return mean_identity
def simple_identity_check(r=1, u=0.125, rate=1, num_parents=1,
num_replicates=10000, mutation_rate=1e-6):
"""
Checks identity using very simple model parameters.
"""
events = [ercs.DiscEventClass(r=r, u=u, rate=rate)]
ll_events = [e.get_low_level_representation() for e in events]
torus_diameter = 100
s = _discsim.IdentitySolver(ll_events,
torus_diameter=torus_diameter,
num_quadrature_points=512,
integration_abserr=1e-6,
integration_relerr=0,
integration_workspace_size=1000,
max_x=50, mutation_rate=mutation_rate,
num_parents=num_parents)
s.solve()
# Set up the simulations
num_points = 10
distances = np.linspace(0, 10, num_points)
sim = SingleLocusIdentitySimulator(torus_diameter, distances,
mutation_rate, 1e-6)
sim.num_parents = num_parents
sim.event_classes = events
workers = multiprocessing.Pool(processes=multiprocessing.cpu_count())
F_sim = run_identity_replicates(sim, num_replicates, workers)
F_num = [s.interpolate(x) for x in distances]
for x, fs, fn in zip(distances, F_sim, F_num):
print("{0:.1f}\t{1:.6f}\t{2:.6f}".format(x, fs, fn))
pyplot.plot(distances, F_sim, label="Simulation")
pyplot.plot(distances, F_num, label="Numerical")
pyplot.legend()
pyplot.show()
def mixed_events_identity_check(num_replicates):
torus_diameter = 100
num_points = 50
max_x = 20
mutation_rate = 1e-6
accuracy_goal = 1e-3
small_events = ercs.DiscEventClass(rate=1.0, r=1, u=0.5)
large_events = ercs.DiscEventClass(rate=0.1, r=10, u=0.05)
sim = ErcsSingleLocusIdentitySimulator(torus_diameter)
sim.setup(num_points, max_x, mutation_rate, accuracy_goal)
workers = multiprocessing.Pool(processes=multiprocessing.cpu_count())
l = [small_events, large_events]
sim.event_classes = l
before = time.time()
ercs_F = run_identity_replicates(sim, num_replicates, workers)
duration = time.time() - before
print("ercs done...", duration)
distances = np.linspace(0, max_x, num_points)
sim = SingleLocusIdentitySimulator(torus_diameter, distances,
mutation_rate, 1e-6)
sim.event_classes = l
before = time.time()
discsim_F = run_identity_replicates(sim, num_replicates, workers)
duration = time.time() - before
print("discsim done...", duration)
pyplot.plot(distances, ercs_F, label="ercs")
pyplot.plot(distances, discsim_F, label="discsim")
pyplot.legend()
pyplot.show()
def get_mean_squared_displacement(z, pop):
"""
Returns the mean squared displacement of the specified population from
the specified point.
"""
d2 = 0.0
for p, a in pop:
d2 += (p[0] - z[0])**2
d2 += (p[1] - z[1])**2
n = len(pop)
return d2 / (n * 2)
def single_locus_diffusion(u, r, rate):
"""
Measure the mean squared displacement of lineages for a single
locus simulation.
"""
z = (100, 100)
sample_size = 10000
s = 2.25
L = 100 * s
sim = discsim.Simulator(L)
sim.pixel_size = s
sim.sample = [None] + [z for j in range(sample_size)]
sim.event_classes = [ercs.DiscEventClass(r=r, u=u, rate=rate)]
sim.max_occupancy = 2 * sample_size
sim.max_population_size = 2 * sample_size
sim.print_state()
T = []
X = []
D = []
S = []
for j in range(100):
t = j * 100 * L**2
sim.run(t)
pop = sim.get_population()
msd = get_mean_squared_displacement(z, pop)
t = sim.get_time() / L**2
T.append(t)
X.append(msd)
S.append(t * (r**4) * rate * u * math.pi / 2)
print(T[-1], X[-1], S[-1])
pyplot.plot(T, X, T, S)
pyplot.show()
def subprocess_wave_worker(args):
sim, times, seed = args
sim.random_seed = seed
L = int(sim.torus_diameter)
n = np.zeros((len(times), L))
for j, t in enumerate(times):
sim.run(t)
pop = sim.get_population()
for tup in pop:
if sim.simulate_pedigree:
k = int(tup)
else:
k = int(tup[0])
n[j, k] += 1
n[j, k + 1] += 1
sim.reset()
return n
def run_wave_replicates(sim, times, num_replicates, worker_pool=None):
args = [(sim, times, random.randint(1, 2**31)) for j in range(num_replicates)]
if worker_pool is None:
replicates = [subprocess_wave_worker(a) for a in args]
else:
replicates = worker_pool.map(subprocess_wave_worker, args)
mean_n = []
for j in range(len(times)):
n = []
for r in replicates:
n.append(r[j])
mean_n.append(np.mean(n, axis=0))
return mean_n
def wave_1d(u, num_loci=0):
"""
Simulates the wave of pedigree ancestors in 1D.
"""
N = int(2 / u)
L = 100
s = discsim.Simulator(L, num_loci==0)
if num_loci != 0:
s.num_loci = num_loci
s.max_population_size = 10000
s.event_classes = [ercs.DiscEventClass(r=1, u=u)]
s.sample = [None, L/2, L/2]
workers = multiprocessing.Pool(processes=multiprocessing.cpu_count())
#workers = None
t = [j * 500 * L for j in range(5)]
x = [j for j in range(L)]
for n in run_wave_replicates(s, t, 100, workers):
pyplot.plot(x, n)
pyplot.axhline(0.797 * N)
pyplot.show()
def main():
#simple_identity_check(rate=0.5)
#simple_identity_check(r=0.93, u=0.133, rate=0.5, num_parents=2,
# num_replicates=10**6, mutation_rate=1e-7)
#mixed_events_identity_check(100000)
#plot_mixed_events_identity()
#single_locus_diffusion(u=0.0000125, r=1, rate=1.0)
wave_1d(u=0.005)
#wave_1d(u=0.005, num_loci=100000)
if __name__ == "__main__":
main()