forked from Azure/MachineLearningNotebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
score.py
29 lines (24 loc) · 881 Bytes
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import pickle
import json
import numpy as np
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
def init():
global model
# note here "best_model" is the name of the model registered under the workspace
# this call should return the path to the model.pkl file on the local disk.
model_path = Model.get_model_path(model_name='best_model')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
# note you can pass in multiple rows for scoring
def run(raw_data):
try:
data = json.loads(raw_data)['data']
data = np.array(data)
result = model.predict(data)
# you can return any data type as long as it is JSON-serializable
return result.tolist()
except Exception as e:
result = str(e)
return result