forked from SWIFTSIM/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
halo_tasks.py
321 lines (272 loc) · 12 KB
/
halo_tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/bin/env python
import time
import numpy as np
import unyt
from dataset_names import mass_dataset, ptypes_for_so_masses
from halo_properties import ReadRadiusTooSmallError
import shared_array
import result_set
import halo_properties
from property_table import PropertyTable
# Factor by which to increase search radius when looking for density threshold
SEARCH_RADIUS_FACTOR = 1.2
# Factor by which to increase the region read in around a halo if too small
READ_RADIUS_FACTOR = 1.5
# Radius in Mpc at which we report halos which have a large search radius
REPORT_RADIUS = 20.0
def process_single_halo(
mesh,
unit_registry,
data,
halo_prop_list,
critical_density,
mean_density,
boxsize,
input_halo,
target_density,
):
"""
This computes properties for one halo and runs on a single
MPI rank. Result is a dict of properties of the form
halo_result[property_name] = (unyt_array, description)
where the property_name will be used as the HDF5 dataset name
in the output and the units of the unyt_array determine the unit
attributes.
Two radii are passed in:
search_radius is an initial guess at the radius we need to fall
below the specified overdensity threshold. read_radius is the
radius within which we have all of the particles. If we find that
the density within read_radius is above the threshold, then we
didn't read in a large enough region.
Returns None if we need to try again with a larger region.
"""
swift_mpc = unyt.Unit("swift_mpc", registry=unit_registry)
snap_length = unyt.Unit("snap_length", registry=unit_registry)
snap_mass = unyt.Unit("snap_mass", registry=unit_registry)
snap_density = snap_mass / (snap_length**3)
# Record which calculations are still to do for this halo
halo_prop_done = np.zeros(len(halo_prop_list), dtype=bool)
# Dict to store the results
halo_result = {}
# Loop until we fall below the required density
current_radius = input_halo["search_radius"]
while True:
# Sanity checks on the radius
assert current_radius <= input_halo["read_radius"]
if current_radius > REPORT_RADIUS * swift_mpc:
print(f"Halo ID={input_halo['ID']} has large search radius {current_radius}")
# Find the mass within the search radius
mass_total = unyt.unyt_quantity(0.0, units=snap_mass)
idx = {}
for ptype in data:
pos = data[ptype]["Coordinates"]
idx[ptype] = mesh[ptype].query_radius_periodic(
input_halo["cofp"], current_radius, pos, boxsize
)
if ptype in ptypes_for_so_masses:
mass = data[ptype][mass_dataset(ptype)]
mass_total += np.sum(mass.full[idx[ptype]], dtype=float)
# Find mean density in the search radius
density = mass_total / (4.0 / 3.0 * np.pi * current_radius**3)
# If we've reached the target density, we can try to compute halo properties
max_physical_radius_mpc = (
0.0 # Will store the largest physical radius requested by any calculation
)
if target_density is None or density <= target_density:
# Extract particles in this halo
particle_data = {}
for ptype in data:
particle_data[ptype] = {}
for name in data[ptype]:
particle_data[ptype][name] = data[ptype][name].full[idx[ptype], ...]
# Wrap coordinates to copy closest to the halo centre
for ptype in particle_data:
pos = particle_data[ptype]["Coordinates"]
# Shift halo to box centre, wrap all particles into box, shift halo back
offset = input_halo["cofp"] - 0.5 * boxsize
pos[:, :] = ((pos - offset) % boxsize) + offset
# Try to compute properties of this halo which haven't been done yet
for prop_nr, halo_prop in enumerate(halo_prop_list):
if halo_prop_done[prop_nr]:
# Already have the result for this one
continue
try:
halo_prop.calculate(
input_halo, current_radius, particle_data, halo_result
)
except ReadRadiusTooSmallError:
# Search radius was too small, so will need to try again with a larger radius.
max_physical_radius_mpc = max(
max_physical_radius_mpc, halo_prop.physical_radius_mpc
)
break
else:
# The property calculation worked!
halo_prop_done[prop_nr] = True
# If we computed all of the properties, we're done with this halo
if np.all(halo_prop_done):
break
# Either the density is still too high or the property calculation failed.
search_radius = input_halo["search_radius"]
required_radius = (max_physical_radius_mpc * swift_mpc).to(search_radius.units)
if required_radius > input_halo["read_radius"]:
# A calculation has set its physical_radius_mpc larger than the region
# which we read in, so we can't process the halo on this iteration regardless
# of the current radius.
input_halo["search_radius"] = max(search_radius, required_radius)
return None
elif current_radius >= input_halo["read_radius"]:
# The current radius has exceeded the region read in. Will need to redo this
# halo using current_radius as the starting point for the next iteration.
input_halo["search_radius"] = max(search_radius, current_radius)
return None
else:
# We still have a large enough region in memory that we can try a larger radius
current_radius = min(
current_radius * SEARCH_RADIUS_FACTOR, input_halo["read_radius"]
)
current_radius = max(current_radius, required_radius)
# In case we're not doing any calculations with a target density
if target_density is None:
target_density = density * 0.0
# Add the halo index to the result set
for vrkey in PropertyTable.vr_properties:
vrprops = PropertyTable.full_property_list[f"VR{vrkey}"]
vrname = vrprops[0]
vrdescription = vrprops[4]
halo_result[f"VR/{vrname}"] = (input_halo[vrkey], vrdescription)
# Store search radius and density within that radius
halo_result["SearchRadius/search_radius"] = (
current_radius,
"Search radius for property calculation",
)
halo_result["SearchRadius/density_in_search_radius"] = (
density.to(snap_density),
"Density within the search radius",
)
halo_result["SearchRadius/target_density"] = (
target_density.to(snap_density),
"Target density for property calculation",
)
return halo_result
def process_halos(
comm,
unit_registry,
data,
mesh,
halo_prop_list,
critical_density,
mean_density,
boxsize,
halo_arrays,
results,
):
"""
This uses all of the MPI ranks on one compute node to compute halo properties
for a single "chunk" of the simulation.
Each rank returns a dict with the properties of the halos it processed.
The dict keys are the property names. The values are tuples containing
(unyt_array, description).
Halos where done=1 are not processed and don't generate an entry in the
output arrays.
If a halo can't be processed because we didn't read enough particles,
its read_radius is doubled but no entry is generated in the output.
"""
# Compute density threshold at this redshift in comoving units:
# This determines the size of the sphere we use for all other SO quantities.
# We need to find the minimum density required for any of the halo property
# calculations
target_density = None
for halo_prop in halo_prop_list:
# Ensure target density is no greater than mean density multiple
if halo_prop.mean_density_multiple is not None:
density = halo_prop.mean_density_multiple * mean_density
if target_density is None or density < target_density:
target_density = density
# Ensure target density is no greater than critical density multiple
if halo_prop.critical_density_multiple is not None:
density = halo_prop.critical_density_multiple * critical_density
if target_density is None or density < target_density:
target_density = density
# Allocate shared storage for a single integer and initialize to zero
if comm.Get_rank() == 0:
local_shape = (1,)
else:
local_shape = (0,)
next_task = shared_array.SharedArray(local_shape, np.int64, comm)
if comm.Get_rank() == 0:
next_task.full[0] = 0
next_task.sync()
# Start the clock
comm.barrier()
t0_all = time.time()
# Count halos to do
nr_halos_left = comm.allreduce(np.sum(halo_arrays["done"].local == 0))
# Loop until all halos are done
nr_halos = len(halo_arrays["index"].full)
nr_done_this_rank = 0
nr_halos_this_rank_guess = int(nr_halos_left / comm.Get_size() * 1.5)
task_time = 0.0
while True:
# Get a task by atomic incrementing the counter. Don't know how to do
# an atomic fetch and add in python, so will use MPI RMA calls!
task_to_do = np.ndarray(1, dtype=np.int64)
one = np.ones(1, dtype=np.int64)
next_task.win.Lock(0)
next_task.win.Fetch_and_op(one, task_to_do, 0)
next_task.win.Unlock(0)
task_to_do = int(task_to_do)
# Execute the task, if there's one left
if task_to_do < nr_halos:
t0_task = time.time()
# Skip halos we already did
if halo_arrays["done"].full[task_to_do] == 0:
# Extract this halo's VR information (centre, radius, index etc)
input_halo = {}
for name in halo_arrays:
input_halo[name] = halo_arrays[name].full[task_to_do, ...].copy()
# Fetch the results for this particular halo
halo_result = process_single_halo(
mesh,
unit_registry,
data,
halo_prop_list,
critical_density,
mean_density,
boxsize,
input_halo,
target_density,
)
if halo_result is not None:
# Store results and flag this halo as done
results.append(halo_result)
nr_done_this_rank += 1
halo_arrays["done"].full[task_to_do] = 1
else:
# We didn't read in a large enough region. Update the shared radius
# arrays so that we read a larger region next time and start the
# search from whatever radius we had reached this time.
new_read_radius = max(
input_halo["read_radius"] * READ_RADIUS_FACTOR,
input_halo["search_radius"],
)
# Set the radius around the halo to read in
halo_arrays["read_radius"].full[task_to_do] = new_read_radius
# Set the initial guess at the radius we need
halo_arrays["search_radius"].full[task_to_do] = input_halo[
"search_radius"
]
t1_task = time.time()
task_time += t1_task - t0_task
else:
# We ran out of halos to do
break
# Free the shared task counter
next_task.free()
# Count halos left to do
comm.barrier()
nr_halos_left = comm.allreduce(np.sum(halo_arrays["done"].local == 0))
# Stop the clock
comm.barrier()
t1_all = time.time()
return t1_all - t0_all, task_time, nr_halos_left, comm.allreduce(nr_done_this_rank)