-
Notifications
You must be signed in to change notification settings - Fork 0
/
5.2tensorbroad.py
86 lines (78 loc) · 3.12 KB
/
5.2tensorbroad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#@Time : 2020/2/10 21:09
#@Author: jccc
#@File : 5.2tensorbroad.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
#@Time : 2020/2/10 17:04
#@Author: jccc
#@File : softmax.py
# 网络运行
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector
#载入数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#定义批次大小
batch_size = 100
#一共多少批次
n_batch = mnist.train.num_examples // batch_size
#参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean) #平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) #标准差
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var) #直方图
#命名空间
with tf.name_scope('input'):
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('layer'):
with tf.name_scope('wights'):
#创建一个 简单的神经网络
w = tf.Variable(tf.zeros([784,10]), name='W')
variable_summaries(w)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x, w) + b
with tf.name_scope('softmax'):
pre = tf.nn.softmax(wx_plus_b)
#定义 二次代价函数
#loss = tf.reduce_mean(tf.square(y - pre))
with tf.name_scope('loss'):
# 交叉熵
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=pre))
tf.summary.scalar('loss',loss)
#梯度下降
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#train_step = tf.train.AdadeltaOptimizer(0.2).minimize(loss)
#chushihua
init = tf.global_variables_initializer()
# 求标签最大的值在哪个位置 结果存放在一个 布尔类型列表 ,#argmax最大值所在文职
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(pre, 1))
with tf.name_scope('taccuracy'):
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
#合并所有的 summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/', sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
summary, _ = sess.run([merged, train_step], feed_dict={x:batch_xs, y:batch_ys})
writer.add_summary(summary, epoch)
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("after "+str(epoch) +"test accuracy" + str(acc))