-
Notifications
You must be signed in to change notification settings - Fork 4
/
LSHsim.py
418 lines (350 loc) · 15.2 KB
/
LSHsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import sys
import numpy as np
import random
import logging
import datetime
import shutil
import os.path as osp
import argparse
import configargparse
import torch
import torchvision
import torchvision.transforms as transforms
# from torch.utils.tensorboard import SummaryWriter
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import omniglot
import memory
from lib_simlsh import *
from simArrayPy import simArrayPy
global args
parser = configargparse.ArgParser()
parser.add('-c', '--config', required=False,
is_config_file=True, help='config file')
parser.add_argument('--save-dir', default=None, type=str, help='Path to storing the model')
parser.add_argument('--eval-way', default=5, type=int, help='Evaluation number of ways')
parser.add_argument('--eval-shot', default=1, type=int, help='Evaluation number of shots')
parser.add_argument('--eval-episode', default=1000, type=int, help='Evaluation iterate episodes')
parser.add_argument('--memory_size', default=2048, type=int, help='Memory capacity')
parser.add_argument('--key-dim', default=64, type=int, help='Key dimension extracted')
parser.add_argument('--lshdim', type=int, nargs='+', default=[64, 128, 256, 512, 1024, 2048, 4096],
help='Hyperplane dimension')
parser.add_argument('--asize', default=64, type=int, help='Crossbar array size')
parser.add_argument('--seed', default=43, type=int, help='Random seed')
parser.add_argument('--ideallshsim', action='store_true', help='Do the ideal LSH simulation')
parser.add_argument('--crossbarsim', action='store_true', help='Do crossbar simulation')
parser.add_argument('--update', action='store_true', help='Do the binary memory update')
parser.add_argument('--sum-argmax', action='store_true', help='Do the sum argmax')
parser.add_argument('--real-eval', action='store_true', help='Do the real value model evaluation')
parser.add_argument('--ch-last', default=128, type=int,
help='Channel number of the last convolution layers in CNN, to match the parameter count')
class Net(nn.Module):
def __init__(self, input_shape, keydim=128, ch_last=args.ch_last):
super(Net, self).__init__()
# Constants
kernel = 3
pad = int((kernel - 1) / 2.0)
p = 0.3
ch, row, col = input_shape
self.conv1 = nn.Conv2d(ch, 64, kernel, padding=(0, 0))
self.conv2 = nn.Conv2d(64, 64, kernel, padding=(0, 0))
self.conv3 = nn.Conv2d(64, 128, kernel, padding=(pad, pad))
self.conv4 = nn.Conv2d(128, 128, kernel, padding=(pad, pad))
self.conv5 = nn.Conv2d(128, ch_last, kernel, padding=(pad, pad))
self.conv6 = nn.Conv2d(ch_last, ch_last, kernel, padding=(pad, pad))
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(9 * ch_last, keydim)
self.dropout = nn.Dropout(p)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool(x)
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = self.pool(x)
x = F.relu(self.conv5(x))
x = F.relu(self.conv6(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc1(x)
x = self.dropout(x)
return x
def main():
# Set up logging
datestr = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
fh = logging.FileHandler('./LSHomni/log/' + datestr + '.log')
fh.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)
console = logging.StreamHandler()
console.setFormatter(formatter)
logger.addHandler(console)
setup_seed(args.seed)
# Dataset loading
DATA_FILE_FORMAT = os.path.join(os.getcwd(), '%s_omni.pkl')
test_filepath = DATA_FILE_FORMAT % 'test'
testset = omniglot.OmniglotDataset(test_filepath)
testloader = testset.test_sampler(args.eval_way, args.eval_shot, args.eval_episode)
logger.info('Test Dataset loaded')
# Network initializing
net = Net(input_shape=(1, 28, 28), keydim=args.key_dim)
mem = memory.Memory(args.memory_size, args.key_dim)
net.add_module("memory", mem)
net.cuda()
model_checkpoint = torch.load(args.save_dir)
net.load_state_dict(model_checkpoint['model_state_dict'])
logger.info(f'Model parameters loaded Dir: {args.save_dir}')
logger.info(f"{args.eval_way}-way {args.eval_shot}-shot evaluation")
net.eval()
Acc_all = []
if args.real_eval:
logger.info(f"Evaluate specific {args.eval_way}-way {args.eval_shot}-shot")
evaluation_all = []
for data in tqdm(testloader):
support_x, support_y, query_x, query_y = data
evaluation = eval_fewshot(net, mem, support_x, support_y, query_x, query_y)
evaluation_all.extend(evaluation)
logger.info(f"{args.eval_way}-way {args.eval_shot}-shot mean accuracy: {np.mean(evaluation_all)}")
logger.info(f"{args.eval_way}-way {args.eval_shot}-shot maximum accuracy: {np.array(evaluation_all).reshape(-1, args.eval_episode).mean(axis=0).max()}")
np.savez(f'./LSHomni/results/RealEval_{args.eval_way}way_{args.eval_shot}shot_{args.key_dim}dim'+datestr, Acc_all=evaluation_all)
else:
for i, data in tqdm(enumerate(testloader)):
accs = []
# Extracting feature vectors using model
support_x, support_y, query_x, query_y = data
query_x = query_x.cuda()
support_x = torch.cat(support_x, dim=0).cuda()
support_y = torch.tensor(support_y)
support_x_embed = net.memory.extract(net(support_x))
query_x_embed = net.memory.extract(net(query_x))
# LSH+TCAM simulation
# LSH using crossbar arrays
train_input = support_x_embed.detach().cpu().numpy()
test_input = query_x_embed.detach().cpu().numpy()
train_label = support_y.detach().numpy()
test_label = query_y.detach().numpy()
for d in args.lshdim:
if args.ideallshsim:
acc = metric_hamming(train_input, test_input, train_label, test_label, dim_plane=d, update=args.update, sum_argmax=args.sum_argmax)
accs.append(acc)
if args.crossbarsim:
Gmap = np.exp(np.random.randn(args.key_dim, d + 1) * 1.1 + 0.8)
G = g_reconstruct(Gmap, r_size=args.asize, c_size=args.asize)
train_hashcode, test_hashcode = crossbarlsh_wr_app(train_input, test_input, train_label, test_label, G,
hashbits=d, bias=0.4, method='TLSH')
# TCAM and accuracy calculations
if args.update:
train_hashcode_update, train_label_update = memoryupdate_binary(train_hashcode, train_label)
acc = crossbartcam_wr_app(train_hashcode_update, test_hashcode, train_label_update, test_label, size=args.asize)
else:
acc = crossbartcam_wr_app(train_hashcode, test_hashcode, train_label, test_label, size=args.asize)
accs.append(acc)
Acc_all.append(accs)
tem_acc = np.array(Acc_all)
if i % 20 == 0:
for ld in range(len(args.lshdim)):
logger.info(f"Average accuracy at {i+1} episode: {tem_acc.mean(axis=0)[ld]}")
Acc_all = np.array(Acc_all)
for j in range(len(args.lshdim)):
logger.info(f"LSH dim: {args.lshdim[j]}, Mean accuracy over {args.eval_episode}: {Acc_all.mean(axis=0)[j]}")
np.savez(f'./LSHomni/results/LSHomni_ideal_{args.eval_way}-way_{args.eval_shot}-shot_{args.eval_episode}-'
f'episode_lshdim-{args.lshdim}_arraysize-{args.asize}_keydim-{args.key_dim}_'+datestr, Acc_total=Acc_all)
def eval_fewshot(model, mem, support_x, support_y, query_x, query_y):
"""
Perform one N-way K-shot evaluation
Return:
"""
model.eval()
mem.build() # clear the memory
# Update the memory for N-way K-shot images
for xx, yy in zip(support_x, support_y):
xx_cuda, yy_cuda = xx.cuda(), yy.cuda()
query = model(xx_cuda)
mem.query(query, yy_cuda, True)
# Use remaining images to do evaluation on the updated memory
query_x_cuda = query_x.cuda()
query = model(query_x_cuda)
yy_hat, _ = mem.predict(query)
evaluation = torch.eq(yy_hat.detach().cpu(), query_y.unsqueeze(dim=1)).squeeze().numpy().astype('float')
return evaluation
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
def g_reconstruct(g, r_size=128, c_size=128, **kwargs):
"""
input: Weight conductance before adding wire resistance /(uS)
output: Effecitive conductance matrix after adding wire resistance
"""
rw = kwargs['rw'] if 'rw' in kwargs.keys() else 1e-6
n_r = np.ceil(g.shape[0]/r_size).astype(int)
n_c = np.ceil(g.shape[1]/c_size).astype(int)
g_new = np.zeros((r_size * n_r, c_size * n_c))
g_new[:g.shape[0], :g.shape[1]] = g
g_eff = np.zeros((n_r*r_size, g.shape[1]))
c_last = g.shape[1] - (n_c - 1) * c_size
for i, g_i in enumerate(np.hsplit(g_new, n_c)):
if i == n_c - 1:
g_i = g_i[:, :c_last]
for j, g_j in enumerate(np.vsplit(g_i, n_r)):
g_eff[j*r_size:(j+1)*r_size, i*c_size:i*c_size +
g_j.shape[1]] = simArrayPy(g_j, rw).geff
return g_eff[:g.shape[0], :]
def crossbarlsh_wr_app(lsh_mem, lsh_query, lsh_memkey, lsh_querykey, G, hashbits=128, slope=0.782, intercept=-2.168,
scale=1., bias=1., method='ACM'):
# crossbar lsh simulation
"""
slope, intercept, scale: parameters determined conductance fluctuation
G : geff after including wire resistance
"""
Accuracy = []
# G = g_reconstruct(G, r_size=size, c_size=size)
Acc = []
mem = lsh_mem
query = lsh_query
memory_lsh = np.zeros((mem.shape[0], hashbits))
query_lsh = np.zeros((query.shape[0], hashbits))
memkey = lsh_memkey
querykey = lsh_querykey
for j, mm in enumerate(mem):
mm_neg, mm_pos = vec_pn(mm)
g = np.abs(Gdrift(G, slope, intercept, scale))
I_pos = np.dot(mm_pos, g) * 0.2
g = np.abs(Gdrift(G, slope, intercept, scale))
I_neg = np.dot(mm_neg, g) * 0.2
I = I_pos - I_neg
I = np.squeeze(I)
if method == 'ACM':
memory_lsh[j] = ((I[:-1] - I[1:]) > 0).astype(int)
elif method == 'TLSH':
memory_lsh[j] = tlsh((I[:-1] - I[1:]), bias)
for j, qq in enumerate(query):
qq_neg, qq_pos = vec_pn(qq)
g = np.abs(Gdrift(G, slope, intercept, scale))
I_pos = np.dot(qq_pos, g) * 0.2
g = np.abs(Gdrift(G, slope, intercept, scale))
I_neg = np.dot(qq_neg, g) * 0.2
I = I_pos - I_neg
I = np.squeeze(I)
if method == 'ACM':
query_lsh[j] = ((I[:-1] - I[1:]) > 0).astype(int)
elif method == 'TLSH':
query_lsh[j] = tlsh((I[:-1] - I[1:]), bias)
return memory_lsh, query_lsh
def crossbartcam_wr_app(m_lsh, q_lsh, lsh_memkey, lsh_querykey, std=5, size=64):
# crossbar 2dpe-TCAM
Accuracy = []
mem_lsh = m_lsh
query_lsh = q_lsh
m_key = lsh_memkey
q_key = lsh_querykey
tcam_stor = tcam_storage(mem_lsh, 150, 0, method='2dpe')
tcam_stor = programerr(tcam_stor, std)
tcam_stor = g_reconstruct(tcam_stor, r_size=size, c_size=size)
if tcam_stor.shape[0] < 64:
tcam_stor_temp = np.zeros((64, tcam_stor.shape[1]))
tcam_stor_temp[:tcam_stor.shape[0]] = tcam_stor
tcam_stor = tcam_stor_temp
if 2 * query_lsh.shape[1] < 64:
search_input = np.zeros((64, query_lsh.shape[0]))
else:
search_input = np.zeros((2 * query_lsh.shape[1], query_lsh.shape[0]))
for i in range(query_lsh.shape[0]):
search_input[:, i] = tcam_input(
query_lsh[i], 1, 0, '2dpe').reshape(-1)
Accuracy.append(np.sum(
(m_key[np.argmin((search_input.T * 0.2) @ tcam_stor, axis=1)] == q_key).astype(int)) / query_lsh.shape[0])
return Accuracy
def tcam_logicalxor(vec1, vec2):
a = np.zeros_like(vec1)
b = abs(vec1 - vec2)
idx = b > 1
b[idx] = 0
a = b
return a
def memoryupdate_binary(mem_lsh, memkey):
"""
core of memory update scheme
"""
# counter
def numcount(vec):
a = np.zeros(vec.shape)
for i, v in enumerate(vec):
if v == 1:
a[i] = 1
elif v == 0:
a[i] = -1
return a
# update
def denumcount(vec):
a = np.zeros(vec.shape)
for i, v in enumerate(vec):
if v > 0:
a[i] = 1
elif v < 0:
a[i] = 0
elif v == 0:
a[i] = 3
return a
memory = []
key = []
count = []
for i in range(mem_lsh.shape[0] // 5):
memory.append(mem_lsh[i * 5])
key.append(memkey[i * 5])
count.append(numcount(mem_lsh[i * 5]))
for i in range(4):
Query = []
query_key = []
for j in range(mem_lsh.shape[0] // 5):
Query.append(mem_lsh[i + 1 + j * 5])
query_key.append(memkey[i + 1 + j * 5])
for k, v in enumerate(Query):
dist = []
for l, m in enumerate(memory):
dist.append(np.sum(tcam_logicalxor(v, m)))
if key[np.argmin(dist)] == query_key[k]:
count[np.argmin(dist)] += numcount(v)
memory[np.argmin(dist)] = denumcount(count[np.argmin(dist)])
else:
memory.append(v)
key.append(query_key[k])
count.append(numcount(v))
return np.array(memory), np.array(key)
def metric_hamming(train_input, test_input, train_label, test_label, dim_plane=1024, update=True, sum_argmax=False):
h_plane = np.random.randn(train_input.shape[-1], dim_plane)
train_hashcode = ((train_input @ h_plane) > 0).astype(int)
if update:
train_hashcode, train_label = memoryupdate_binary(train_hashcode, train_label)
print(train_label.shape)
test_hashcode = ((test_input @ h_plane) > 0).astype(int)
hamming_d = tcam_logicalxor(test_hashcode[:, None, :], train_hashcode[None, :, :]).sum(-1)
if sum_argmax:
id = np.identity(train_label.max() + 1)
onehot = []
for i in train_label:
onehot.append(id[i])
onehot = np.vstack(onehot)
hd_sum = hamming_d @ onehot
idx = np.argmin(hd_sum, axis=-1)
acc = (idx == test_label).astype(int).sum() / len(test_label)
else:
idx = np.array(train_label)[np.argmin(hamming_d, axis=-1)]
acc = (idx == test_label).astype(int).sum() / len(test_label)
return acc
if __name__ == '__main__':
args = parser.parse_args('-c ./LSHomni/lshsim.config')
main()