forked from aditya12agd5/convcap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvcap.py
138 lines (103 loc) · 3.94 KB
/
convcap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
#Layers adapted for captioning from https://arxiv.org/abs/1705.03122
def Conv1d(in_channels, out_channels, kernel_size, padding, dropout=0):
m = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding)
std = math.sqrt((4 * (1.0 - dropout)) / (kernel_size * in_channels))
m.weight.data.normal_(mean=0, std=std)
m.bias.data.zero_()
return nn.utils.weight_norm(m)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
m.weight.data.normal_(0, 0.1)
return m
def Linear(in_features, out_features, dropout=0.):
m = nn.Linear(in_features, out_features)
m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features))
m.bias.data.zero_()
return nn.utils.weight_norm(m)
class AttentionLayer(nn.Module):
def __init__(self, conv_channels, embed_dim):
super(AttentionLayer, self).__init__()
self.in_projection = Linear(conv_channels, embed_dim)
self.out_projection = Linear(embed_dim, conv_channels)
self.bmm = torch.bmm
def forward(self, x, wordemb, imgsfeats):
residual = x
x = (self.in_projection(x) + wordemb) * math.sqrt(0.5)
b, c, f_h, f_w = imgsfeats.size()
y = imgsfeats.view(b, c, f_h*f_w)
x = self.bmm(x, y)
sz = x.size()
x = F.softmax(x.view(sz[0] * sz[1], sz[2]))
x = x.view(sz)
attn_scores = x
y = y.permute(0, 2, 1)
x = self.bmm(x, y)
s = y.size(1)
x = x * (s * math.sqrt(1.0 / s))
x = (self.out_projection(x) + residual) * math.sqrt(0.5)
return x, attn_scores
class convcap(nn.Module):
def __init__(self, num_wordclass, num_layers=1, is_attention=True, nfeats=512, dropout=.1):
super(convcap, self).__init__()
self.nimgfeats = 4096
self.is_attention = is_attention
self.nfeats = nfeats
self.dropout = dropout
self.emb_0 = Embedding(num_wordclass, nfeats, padding_idx=0)
self.emb_1 = Linear(nfeats, nfeats, dropout=dropout)
self.imgproj = Linear(self.nimgfeats, self.nfeats, dropout=dropout)
self.resproj = Linear(nfeats*2, self.nfeats, dropout=dropout)
n_in = 2*self.nfeats
n_out = self.nfeats
self.n_layers = num_layers
self.convs = nn.ModuleList()
self.attention = nn.ModuleList()
self.kernel_size = 5
self.pad = self.kernel_size - 1
for i in range(self.n_layers):
self.convs.append(Conv1d(n_in, 2*n_out, self.kernel_size, self.pad, dropout))
if(self.is_attention):
self.attention.append(AttentionLayer(n_out, nfeats))
n_in = n_out
self.classifier_0 = Linear(self.nfeats, (nfeats // 2))
self.classifier_1 = Linear((nfeats // 2), num_wordclass, dropout=dropout)
def forward(self, imgsfeats, imgsfc7, wordclass):
attn_buffer = None
wordemb = self.emb_0(wordclass)
wordemb = self.emb_1(wordemb)
x = wordemb.transpose(2, 1)
batchsize, wordembdim, maxtokens = x.size()
y = F.relu(self.imgproj(imgsfc7))
y = y.unsqueeze(2).expand(batchsize, self.nfeats, maxtokens)
x = torch.cat([x, y], 1)
for i, conv in enumerate(self.convs):
if(i == 0):
x = x.transpose(2, 1)
residual = self.resproj(x)
residual = residual.transpose(2, 1)
x = x.transpose(2, 1)
else:
residual = x
x = F.dropout(x, p=self.dropout, training=self.training)
x = conv(x)
x = x[:,:,:-self.pad]
x = F.glu(x, dim=1)
if(self.is_attention):
attn = self.attention[i]
x = x.transpose(2, 1)
x, attn_buffer = attn(x, wordemb, imgsfeats)
x = x.transpose(2, 1)
x = (x+residual)*math.sqrt(.5)
x = x.transpose(2, 1)
x = self.classifier_0(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.classifier_1(x)
x = x.transpose(2, 1)
return x, attn_buffer