forked from giangnguyen2412/Contcap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample.py
128 lines (105 loc) · 4.27 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import argparse
import pickle
import os
from torchvision import transforms
from prepro.build_vocab import Vocabulary
from model import EncoderCNN, DecoderRNN
from PIL import Image
def visualize(image_path, words, smooth=True):
"""
Visualizes caption with weights at every word.
:param image_path: path to image that has been captioned
:param words: caption
:param smooth: smooth weights?
"""
# Uncomment to switch backend and choose your backend is necessary
# plt.switch_backend("TKAgg")
image = Image.open(image_path)
image = image.resize([14 * 24, 14 * 24], Image.LANCZOS)
plt.text(0, 1, '%s' % words, color='black', backgroundcolor='white', fontsize=12)
plt.imshow(image)
plt.set_cmap(cm.Greys_r)
plt.axis('image')
plt.show()
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_image(image_path, transform=None):
"""
Load an image and return
:param image_path:
:param transform:
:return:
"""
image = Image.open(image_path)
image = image.resize([224, 224], Image.LANCZOS)
if transform is not None:
image = transform(image).unsqueeze(0)
return image
def main(args):
# Image pre-processing
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
# Load vocabulary wrapper
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# Build models
checkpoint = torch.load(args.model)
encoder = checkpoint['encoder']
decoder = checkpoint['decoder']
'''
encoder = EncoderCNN(args.embed_size).eval() # eval mode (batchnorm uses moving mean/variance)
decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers)
encoder = encoder.to(device)
decoder = decoder.to(device)
# Load the trained model parameters
encoder.load_state_dict(torch.load(args.encoder_path))
decoder.load_state_dict(torch.load(args.decoder_path))
'''
# Prepare an image
image = load_image(args.image, transform)
image_tensor = image.to(device)
# Generate an caption from the image
feature = encoder(image_tensor)
sampled_ids = decoder.sample(feature)
sampled_ids = sampled_ids[0].cpu().numpy() # (1, max_seq_length) -> (max_seq_length)
# Convert word_ids to words
sampled_caption = []
for word_id in sampled_ids:
word = vocab.idx2word[word_id]
sampled_caption.append(word)
if word == '<end>':
break
sentence = ' '.join(sampled_caption)
sentence = sentence.replace('<start>', '')
sentence = sentence.replace('<end>', '')
# Print out the image and the generated caption
print (sentence)
# image = Image.open(args.image)
visualize(args.image, sentence)
# plt.imshow(np.asarray(image))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, required=True, help='input image for generating caption')
# parser.add_argument('--image', type=str, default = 'png/cat2.jpg', help='input image for generating caption')
'''
parser.add_argument('--encoder_path', type=str, default='models/seq/44_distill_seq/best/encoder.ckpt',
help='path for trained encoder')
parser.add_argument('--decoder_path', type=str, default='models/seq/44_distill_seq/best/decoder.ckpt',
help='path for trained decoder')
'''
parser.add_argument('--model', type=str, required=True,
help='path for trained model')
parser.add_argument('--vocab_path', type=str, required=True,
help='path for vocabulary wrapper')
# Model parameters (should be same as paramters in train.py)
parser.add_argument('--embed_size', type=int , default=256, help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=512, help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=1, help='number of layers in lstm')
args = parser.parse_args()
main(args)