Skip to content

Latest commit

 

History

History
835 lines (750 loc) · 33.7 KB

README.md

File metadata and controls

835 lines (750 loc) · 33.7 KB

Code is tested on python3.5, pytorch 1.0.1 cuda10.0.130_cudnn7.4.2.2, and jupyter 1.0.0

Citation

If you find our work useful in your research, please consider citing:

@article{nguyen2019contcap,
  title={ContCap: A scalable framework for continual image captioning},
  author={Nguyen, Giang and Jun, Tae Joon and Tran, Trung and Yalew, Tolcha and Kim, Daeyoung},
  journal={arXiv preprint arXiv:1909.08745},
  year={2019}
}

Dependencies

Packages needed to run is in environment.yml. Create a virtual environment to run this, (optionally rename the environment's name by tweaking the YML file).

To create a virtual env and install required packages, please use miniconda3, and run:

conda env create -f environment.yml

Data preparation

Folder structure

.# THIS IS $HOME dir
├── data                        # Contains annotations, images, and vocabularies
  ├── annotations               # Contains json files for test, train, val of a specific task
  ├── img                       # Contains images for test, train, val of a specific task
  ├── vocab                     # Contains vocabulary of a specific task
├── dataset                     # Documentation files (alternatively `doc`)
  ├── original 
    ├── annotations_trainval2014  # Contains json files from MSCOCO
    ├── train2014                 # Train images from MSCOCO
    ├── val2014                   # val images from MSCOCO
  ├── processed 
    ├── train                   # Contains 80 directories of 80 classes with training images
    ├── val                     # Contains 80 directories of 80 classes with validation images
    ├── test                    # Contains 80 directories of 80 classes with testing images
├── infer                       # Contains predictions of model on the test images of a specific task
  ├── json
├── models                      # Contains models for tasks after training
  ├── one                       # Contains models when adding a class
  ├── once                      # Contains models when multiple classes at once
  ├── seq                       # Contains models when multiple classes one by one
├── png                         # Some sample images for testing
├── prepro                      # Tools and utilities for processing data
├── LICENSE
└── README.md

Data processing

Download MS-COCO 2014 dataset and put them into directories like above Folder structure.

First we read the original MS-COCO and classify (+resize) to 80 different classes to 80 different folders in processed/. In prepro/, run

python classify_and_resize.py

coco-caption for evaluation

For evaluation of this project, we use coco-caption package from Liu's repository but remove some redundancies. Download our modified coco-caption here.

Training & inference

  • Step 1: Create data for 2to21. In prepro/, run
bash process_data.sh 2to21 2to21
  • Step 2: Train model 2to21 to get model for fine-tuning. From $HOME, run:
python train.py --task_type one --task_name 2to21

However, it is recommended to use our model and vocabulary for a better reproducibility (Random weight initilization and data shuffling shift the final results). Please download the model and vocabulary from HERE. After that, put the vocabulary at data/vocab/2to21/ (overwrite), and the model at models/one/2to21/best/.

  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                               # Image to be tested
  json_path: 'data/annotations/2to21/captions_test.json'         # Annotations of images to be tested
  model: 'models/one/2to21/best/BEST_checkpoint_ms-coco.pth.tar' # Model to test
  vocab_path: 'data/vocab/2to21/vocab.pkl'                       # Vocab corresponding to the model
  prediction_path: 'infer/json/2to21_on_2to21/'                  # Test model 1 with fine-tuning on 2to21 test set
  id2class_path: 'dataset/processed/id2class.json'               # Skip it

then run:

python infer.py
  • Step 4: Compute metrics by using coco-caption package provided. Run coco-caption/cocoEvalCapDemo.ipynb by jupyter notebook. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/2to21_on_2to21/prediction.json'
  • Step 5: Generate a sentence for a picture. Run:
python sample.py --model YOUR_MODEL --image IMAGE_TO_INFER --vocab VOCAB_FOR_THE_MODEL

Example:

python sample.py --model models/one/2to21/best/BEST_checkpoint_ms-coco.pth.tar --image png/cat2.jpg 
--vocab data/vocab/2to21/vocab.pkl

Addition of one class

Fine-tuning

  • Step 1: Create data for this task. In prepro/, run
bash process_data.sh 1 1
  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type one --task_name 1 --fine_tuning
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                               # Image to be tested
  json_path: 'data/annotations/2to21/captions_test.json'         # Annotations of images to be tested
  model: 'models/one/1/best/BEST_checkpoint_ms-coco.pth.tar'     # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                           # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_2to21/'                      # Test model 1 with fine-tuning on 2to21 test set
  id2class_path: 'dataset/processed/id2class.json'               # Skip it

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_2to21/prediction.json'
  • Step 5: Infer captions to compute metrics 1's test set:
infer:
  img_path: 'data/img/1/test/'                                   # Image to be tested
  json_path: 'data/annotations/1/captions_test.json'             # Annotations of images to be tested
  model: 'models/one/1/best/BEST_checkpoint_ms-coco.pth.tar'     # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                           # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_1/'                          # Test model 1 with fine-tuning on 2to21 test set
  id2class_path: 'dataset/processed/id2class.json'               # Skip it

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/1/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_1/prediction.json'

Pseudo-labeling

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type one --task_name 1 --fine_tuning --lwf
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                               # Image to be tested
  json_path: 'data/annotations/2to21/captions_test.json'         # Annotations of images to be tested
  model: 'models/one/1_lwf/best/BEST_checkpoint_ms-coco.pth.tar' # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                           # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_2to21_lwf/'                  
  id2class_path: 'dataset/processed/id2class.json'               # Skip it

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_2to21_lwf/prediction.json'
  • Step 5: Infer captions to compute metrics 1's test set:
infer:
  img_path: 'data/img/1/test/'                                   # Image to be tested
  json_path: 'data/annotations/1/captions_test.json'             # Annotations of images to be tested
  model: 'models/one/1_lwf/best/BEST_checkpoint_ms-coco.pth.tar' # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                           # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_1_lwf/'                          
  id2class_path: 'dataset/processed/id2class.json'               # Skip it

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/1/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_1_lwf/prediction.json'

Freeze encoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type one --task_name 1 --fine_tuning --freeze_enc
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                                      # Image to be tested
  json_path: 'data/annotations/2to21/captions_test.json'                # Annotations of images to be tested
  model: 'models/one/1_freeze_enc/best/BEST_checkpoint_ms-coco.pth.tar' # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                                  # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_2to21_freeze_enc/'                  
  id2class_path: 'dataset/processed/id2class.json'                      # Skip it

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_2to21_freeze_enc/prediction.json'
  • Step 5: Infer captions to compute metrics 1's test set:
infer:
  img_path: 'data/img/1/test/'                                              # Image to be tested
  json_path: 'data/annotations/1/captions_test.json'                        # Annotations of images to be tested
  model: 'models/one/1_freeze_enc/best/BEST_checkpoint_ms-coco.pth.tar'     # Model to test
  vocab_path: 'data/vocab/1/vocab.pkl'                                      # Vocab corresponding to the model
  prediction_path: 'infer/json/1_on_1_freeze_enc/'                          
  id2class_path: 'dataset/processed/id2class.json'                          # Skip it

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/1/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_1_freeze_enc/prediction.json'

Freeze decoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type one --task_name 1 --fine_tuning --freeze_dec
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                               
  json_path: 'data/annotations/2to21/captions_test.json'        
  model: 'models/one/1_freeze_dec/best/BEST_checkpoint_ms-coco.pth.tar'
  vocab_path: 'data/vocab/1/vocab.pkl'                  
  prediction_path: 'infer/json/1_on_2to21_freeze_dec/'                  
  id2class_path: 'dataset/processed/id2class.json'                

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_2to21_freeze_dec/prediction.json'
  • Step 5: Infer captions to compute metrics 1's test set:
infer:
  img_path: 'data/img/1/test/'                                 
  json_path: 'data/annotations/1/captions_test.json'      
  model: 'models/one/1_freeze_dec/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/1/vocab.pkl'                        
  prediction_path: 'infer/json/1_on_1_freeze_dec/'                          
  id2class_path: 'dataset/processed/id2class.json'             

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/1/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_1_freeze_dec/prediction.json'

Distillation

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type one --task_name 1 --fine_tuning --distill
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                              
  json_path: 'data/annotations/2to21/captions_test.json'       
  model: 'models/one/1_distill/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/1/vocab.pkl'                     
  prediction_path: 'infer/json/1_on_2to21_distill/'                  
  id2class_path: 'dataset/processed/id2class.json'               

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_2to21_distill/prediction.json'
  • Step 5: Infer captions to compute metrics 1's test set:
infer:
  img_path: 'data/img/1/test/'                               
  json_path: 'data/annotations/1/captions_test.json'         
  model: 'models/one/1_distill/best/BEST_checkpoint_ms-coco.pth.tar'   
  vocab_path: 'data/vocab/1/vocab.pkl'                     
  prediction_path: 'infer/json/1_on_1_distill/'                          
  id2class_path: 'dataset/processed/id2class.json'           

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/1/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/1_on_1_distill/prediction.json'

Addition of 5 classes at once

Fine-tuning

  • Step 1: Create data for this task. In prepro/, run
bash process_data.sh once once
  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type once --task_name once --fine_tuning
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                             
  json_path: 'data/annotations/2to21/captions_test.json'         
  model: 'models/once/once/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/once/vocab.pkl'                     
  prediction_path: 'infer/json/once_on_2to21/'               
  id2class_path: 'dataset/processed/id2class.json'               

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_2to21/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                  
  json_path: 'data/annotations/once/captions_test.json'            
  model: 'models/once/once/best/BEST_checkpoint_ms-coco.pth.tar'     
  vocab_path: 'data/vocab/once/vocab.pkl'                         
  prediction_path: 'infer/json/once_on_once/'                        
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_once/prediction.json'

Pseudo-labeling

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type once --task_name once --fine_tuning --lwf
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                          
  json_path: 'data/annotations/2to21/captions_test.json'      
  model: 'models/once/once_lwf/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/once/vocab.pkl'                     
  prediction_path: 'infer/json/once_on_2to21_lwf/'                 
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_2to21_lwf/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'         
  model: 'models/once/once_lwf/best/BEST_checkpoint_ms-coco.pth.tar'     
  vocab_path: 'data/vocab/once/vocab.pkl'                       
  prediction_path: 'infer/json/once_on_once_lwf/'                          
  id2class_path: 'dataset/processed/id2class.json'               

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_once_lwf/prediction.json'

Freeze encoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type once --task_name once --fine_tuning --freeze_enc
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                              
  json_path: 'data/annotations/2to21/captions_test.json'        
  model: 'models/once/once_freeze_enc/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/once/vocab.pkl'                     
  prediction_path: 'infer/json/once_on_2to21_freeze_enc/'                 
  id2class_path: 'dataset/processed/id2class.json'                  

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_2to21_freeze_enc/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'            
  model: 'models/once/once_freeze_enc/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/once/vocab.pkl'                       
  prediction_path: 'infer/json/once_on_once_freeze_enc/'                          
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_once_freeze_enc/prediction.json'

Freeze decoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type once --task_name once --fine_tuning --freeze_dec
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                            
  json_path: 'data/annotations/2to21/captions_test.json'        
  model: 'models/once/once_freeze_dec/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/once/vocab.pkl'                     
  prediction_path: 'infer/json/once_on_2to21_freeze_dec/'                 
  id2class_path: 'dataset/processed/id2class.json'                  

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_2to21_freeze_dec/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'          
  model: 'models/once/once_freeze_dec/best/BEST_checkpoint_ms-coco.pth.tar'   
  vocab_path: 'data/vocab/once/vocab.pkl'                         
  prediction_path: 'infer/json/once_on_once_freeze_dec/'                          
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_once_freeze_dec/prediction.json'

Distillation

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type once --task_name once --fine_tuning --distill
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set:
infer:
  img_path: 'data/img/2to21/test/'                          
  json_path: 'data/annotations/2to21/captions_test.json'        
  model: 'models/once/once_distill/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/once/vocab.pkl'                     
  prediction_path: 'infer/json/once_on_2to21_distill/'                 
  id2class_path: 'dataset/processed/id2class.json'              

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_2to21_distill/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'           
  model: 'models/once/once_distill/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/once/vocab.pkl'                         
  prediction_path: 'infer/json/once_on_once_distill/'                          
  id2class_path: 'dataset/processed/id2class.json'                

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/once_on_once_distill/prediction.json'

Addition of 5 classes sequentially

Because the last model that we obtain is from task 44 (bottle), we have to run testing on test splits of whole 5 new classes - Smultiple.

Fine-tuning

  • Step 1: Create data for this task. In prepro/, run
bash process_data.sh dump seq
  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type seq --fine_tuning
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set. Because the last model that we obtain is from task 44 (bottle), so we will compute metrics using task 44's model:
infer:
  img_path: 'data/img/2to21/test/'                           
  json_path: 'data/annotations/2to21/captions_test.json'      
  model: 'models/seq/44_seq/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/44/vocab.pkl'                    
  prediction_path: 'infer/json/44_seq_on_2to21/'                 
  id2class_path: 'dataset/processed/id2class.json'                

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_2to21/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'             
  model: 'models/seq/44_seq/best/BEST_checkpoint_ms-coco.pth.tar'   
  vocab_path: 'data/vocab/44/vocab.pkl'                          
  prediction_path: 'infer/json/44_seq_on_once/'                      
  id2class_path: 'dataset/processed/id2class.json'               

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_once/prediction.json'

Pseudo-labeling

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type seq --fine_tuning --lwf
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set. Because the last model that we obtain is from task 44 (bottle), so we will compute metrics using task 44's model:
infer:
  img_path: 'data/img/2to21/test/'                             
  json_path: 'data/annotations/2to21/captions_test.json'       
  model: 'models/seq/44_lwf_seq/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/44/vocab.pkl'                      
  prediction_path: 'infer/json/44_seq_on_2to21_lwf/'                  
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_2to21_lwf/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                         
  json_path: 'data/annotations/once/captions_test.json'           
  model: 'models/seq/44_lwf_seq/best/BEST_checkpoint_ms-coco.pth.tar'   
  vocab_path: 'data/vocab/44/vocab.pkl'                       
  prediction_path: 'infer/json/44_seq_on_once_lwf/'                         
  id2class_path: 'dataset/processed/id2class.json'                

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_once_lwf/prediction.json'

Freeze encoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type seq --fine_tuning --freeze_enc
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set. Because the last model that we obtain is from task 44 (bottle), so we will compute metrics using task 44's model:
infer:
  img_path: 'data/img/2to21/test/'                            
  json_path: 'data/annotations/2to21/captions_test.json'       
  model: 'models/seq/44_freeze_enc_seq/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/44/vocab.pkl'                      
  prediction_path: 'infer/json/44_seq_on_2to21_freeze_enc/'                  
  id2class_path: 'dataset/processed/id2class.json'                 

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_2to21_freeze_enc/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                               
  json_path: 'data/annotations/once/captions_test.json'          
  model: 'models/seq/44_freeze_enc_seq/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/44/vocab.pkl'                          
  prediction_path: 'infer/json/44_seq_on_once_freeze_enc/'                         
  id2class_path: 'dataset/processed/id2class.json'                  

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_once_freeze_enc/prediction.json'

Freeze decoder

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type seq --fine_tuning --freeze_dec
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set. Because the last model that we obtain is from task 44 (bottle), so we will compute metrics using task 44's model:
infer:
  img_path: 'data/img/2to21/test/'                              
  json_path: 'data/annotations/2to21/captions_test.json'         
  model: 'models/seq/44_freeze_dec_seq/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/44/vocab.pkl'                       
  prediction_path: 'infer/json/44_seq_on_2to21_freeze_dec/'                  
  id2class_path: 'dataset/processed/id2class.json'                

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_2to21_freeze_dec/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                              
  json_path: 'data/annotations/once/captions_test.json'            
  model: 'models/seq/44_freeze_dec_seq/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/44/vocab.pkl'                         
  prediction_path: 'infer/json/44_seq_on_once_freeze_dec/'                         
  id2class_path: 'dataset/processed/id2class.json'                  

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_once_freeze_dec/prediction.json'

Distillation

  • Step 2: Train model. Fine-tune from model 2to21, then from $HOME run :
python train.py --task_type seq --fine_tuning --distill
  • Step 3: Infer captions to compute metrics by changing infer section in config.yaml file. Here we test this model on 2to21's test set. Because the last model that we obtain is from task 44 (bottle), so we will compute metrics using task 44's model:
infer:
  img_path: 'data/img/2to21/test/'                               
  json_path: 'data/annotations/2to21/captions_test.json'      
  model: 'models/seq/44_distill_seq/best/BEST_checkpoint_ms-coco.pth.tar' 
  vocab_path: 'data/vocab/44/vocab.pkl'                      
  prediction_path: 'infer/json/44_seq_on_2to21_distill/'                  
  id2class_path: 'dataset/processed/id2class.json'               

then run:

python infer.py
  • Step 4: Compute metrics on the old task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/2to21/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_2to21_distill/prediction.json'
  • Step 5: Infer captions to compute metrics once's test set:
infer:
  img_path: 'data/img/once/test/'                                 
  json_path: 'data/annotations/once/captions_test.json'           
  model: 'models/seq/44_distill_seq/best/BEST_checkpoint_ms-coco.pth.tar'    
  vocab_path: 'data/vocab/44/vocab.pkl'                          
  prediction_path: 'infer/json/44_seq_on_once_distill/'                         
  id2class_path: 'dataset/processed/id2class.json'                  

then run:

python infer.py
  • Step 6: Compute metrics on the new task by using coco-caption/cocoEvalCapDemo.ipynb. Modify:
annFile = 'your_path_to_$HOME/data/annotations/once/captions_test.json'
resFile = 'your_path_to_$HOME/infer/json/44_seq_on_once_distill/prediction.json'