forked from INM-6/beNNch-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hpc_benchmark.py
580 lines (453 loc) · 21.3 KB
/
hpc_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# -*- coding: utf-8 -*-
#
# hpc_benchmark.py
#
# This file is part of NEST.
#
# Copyright (C) 2004 The NEST Initiative
#
# NEST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# NEST is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <http://www.gnu.org/licenses/>.
"""
Random balanced network HPC benchmark
-------------------------------------
This script produces a balanced random network of `scale*11250` neurons in
which the excitatory-excitatory neurons exhibit STDP with
multiplicative depression and power-law potentiation. A mutual
equilibrium is obtained between the activity dynamics (low rate in
asynchronous irregular regime) and the synaptic weight distribution
(unimodal). The number of incoming connections per neuron is fixed
and independent of network size (indegree=11250).
This is the standard network investigated in [1]_, [2]_, [3]_.
A note on scaling
~~~~~~~~~~~~~~~~~
This benchmark was originally developed for very large-scale simulations on
supercomputers with more than 1 million neurons in the network and
11.250 incoming synapses per neuron. For such large networks, synaptic input
to a single neuron will be little correlated across inputs and network
activity will remain stable over long periods of time.
The original network size corresponds to a scale parameter of 100 or more.
In order to make it possible to test this benchmark script on desktop
computers, the scale parameter is set to 1 below, while the number of
11.250 incoming synapses per neuron is retained. In this limit, correlations
in input to neurons are large and will lead to increasing synaptic weights.
Over time, network dynamics will therefore become unstable and all neurons
in the network will fire in synchrony, leading to extremely slow simulation
speeds.
Therefore, the presimulation time is reduced to 50 ms below and the
simulation time to 250 ms, while we usually use 100 ms presimulation and
1000 ms simulation time.
For meaningful use of this benchmark, you should use a scale > 10 and check
that the firing rate reported at the end of the benchmark is below 10 spikes
per second.
References
~~~~~~~~~~
.. [1] Morrison A, Aertsen A, Diesmann M (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput 19(6):1437-67
.. [2] Helias et al (2012). Supercomputers ready for use as discovery machines
for neuroscience. Front. Neuroinform. 6:26
.. [3] Kunkel et al (2014). Spiking network simulation code for petascale
computers. Front. Neuroinform. 8:78
"""
import numpy as np
import os
import time
import scipy.special as sp
import nest
import nest.raster_plot
M_INFO = 10
M_ERROR = 30
###############################################################################
# Parameter section
# Define all relevant parameters: changes should be made here
params = {
'num_threads': {threads_per_task}, # total number of threads per process
'scale': {scale}, # scaling factor of the network size
# total network size = scale*11250 neurons
'simtime': {model_time_sim}, # total simulation time in ms
'presimtime': {model_time_presim}, # simulation time until reaching equilibrium
'dt': 0.1, # simulation step
'compressed_spikes': {compressed_spikes}, # whether to use spike compression
'record_spikes': {record_spikes}, # switch to record spikes of excitatory neurons to file
'rng_seed': {rng_seed}, # random number generator seed
'path_name': '.', # path where all files will have to be written
'log_file': 'logfile', # naming scheme for the log files
'step_data_keys': '{step_data_keys}', # metrics to be recorded at each time step
'profile_memory': False, # record memory profile
}
step_data_keys = params['step_data_keys'].split(',')
def convert_synapse_weight(tau_m, tau_syn, C_m):
"""
Computes conversion factor for synapse weight from mV to pA
This function is specific to the leaky integrate-and-fire neuron
model with alpha-shaped postsynaptic currents.
"""
# compute time to maximum of V_m after spike input
# to neuron at rest
a = tau_m / tau_syn
b = 1.0 / tau_syn - 1.0 / tau_m
t_rise = 1.0 / b * (-lambertwm1(-np.exp(-1.0 / a) / a).real - 1.0 / a)
v_max = np.exp(1.0) / (tau_syn * C_m * b) * (
(np.exp(-t_rise / tau_m) - np.exp(-t_rise / tau_syn)) /
b - t_rise * np.exp(-t_rise / tau_syn))
return 1. / v_max
###############################################################################
# For compatibility with earlier benchmarks, we require a rise time of
# ``t_rise = 1.700759 ms`` and we choose ``tau_syn`` to achieve this for given
# ``tau_m``. This requires numerical inversion of the expression for ``t_rise``
# in ``convert_synapse_weight``. We computed this value once and hard-code
# it here.
tau_syn = 0.32582722403722841
brunel_params = {
'NE': int(9000 * params['scale']), # number of excitatory neurons
'NI': int(2250 * params['scale']), # number of inhibitory neurons
'Nrec': 1000, # number of neurons to record spikes from
'model_params': { # Set variables for iaf_psc_alpha
'E_L': 0.0, # Resting membrane potential(mV)
'C_m': 250.0, # Capacity of the membrane(pF)
'tau_m': 10.0, # Membrane time constant(ms)
't_ref': 0.5, # Duration of refractory period(ms)
'V_th': 20.0, # Threshold(mV)
'V_reset': 0.0, # Reset Potential(mV)
# time const. postsynaptic excitatory currents(ms)
'tau_syn_ex': tau_syn,
# time const. postsynaptic inhibitory currents(ms)
'tau_syn_in': tau_syn,
'tau_minus': 30.0, # time constant for STDP(depression)
# V can be randomly initialized see below
'V_m': 5.7 # mean value of membrane potential
},
####################################################################
# Note that Kunkel et al. (2014) report different values. The values
# in the paper were used for the benchmarks on K, the values given
# here were used for the benchmark on JUQUEEN.
'randomize_Vm': True,
'mean_potential': 5.7,
'sigma_potential': 7.2,
'delay': 1.5, # synaptic delay, all connections(ms)
# synaptic weight
'JE': 0.14, # peak of EPSP
'sigma_w': 3.47, # standard dev. of E->E synapses(pA)
'g': -5.0,
'stdp_params': {
'delay': 1.5,
'alpha': 0.0513,
'lambda': 0.1, # STDP step size
'mu': 0.4, # STDP weight dependence exponent(potentiation)
'tau_plus': 15.0, # time constant for potentiation
},
'eta': 1.685, # scaling of external stimulus
'filestem': params['path_name']
}
###############################################################################
# Function Section
def build_network():
"""Builds the network including setting of simulation and neuron
parameters, creation of neurons and connections
"""
tic = time.time() # start timer on construction
# unpack a few variables for convenience
NE = brunel_params['NE']
NI = brunel_params['NI']
model_params = brunel_params['model_params']
stdp_params = brunel_params['stdp_params']
# set global kernel parameters
nest.SetKernelStatus({'local_num_threads': params['num_threads'],
'resolution': params['dt'],
'rng_seed': params['rng_seed'],
'overwrite_files': True,
'use_compressed_spikes': params['compressed_spikes'],
'keep_source_table': False})
extra_params = {kwds}
if extra_params:
nest.SetKernelStatus(extra_params)
nest.message(M_INFO, 'build_network', 'Creating excitatory population.')
E_neurons = nest.Create('iaf_psc_alpha', NE, params=model_params)
nest.message(M_INFO, 'build_network', 'Creating inhibitory population.')
I_neurons = nest.Create('iaf_psc_alpha', NI, params=model_params)
if brunel_params['randomize_Vm']:
nest.message(M_INFO, 'build_network',
'Randomzing membrane potentials.')
random_vm = nest.random.normal(brunel_params['mean_potential'],
brunel_params['sigma_potential'])
nest.GetLocalNodeCollection(E_neurons).V_m = random_vm
nest.GetLocalNodeCollection(I_neurons).V_m = random_vm
# number of incoming excitatory connections
CE = int(1. * NE / params['scale'])
# number of incomining inhibitory connections
CI = int(1. * NI / params['scale'])
nest.message(M_INFO, 'build_network',
'Creating excitatory stimulus generator.')
# Convert synapse weight from mV to pA
conversion_factor = convert_synapse_weight(
model_params['tau_m'], model_params['tau_syn_ex'], model_params['C_m'])
JE_pA = conversion_factor * brunel_params['JE']
nu_thresh = model_params['V_th'] / (
CE * model_params['tau_m'] / model_params['C_m'] *
JE_pA * np.exp(1.) * tau_syn)
nu_ext = nu_thresh * brunel_params['eta']
E_stimulus = nest.Create('poisson_generator', 1, {
'rate': nu_ext * CE * 1000.})
nest.message(M_INFO, 'build_network',
'Creating excitatory spike recorder.')
if params['record_spikes']:
recorder_label = os.path.join(
brunel_params['filestem'],
'alpha_' + str(stdp_params['alpha']) + '_spikes')
E_recorder = nest.Create('spike_recorder', params={
'record_to': 'ascii',
'label': recorder_label
})
BuildNodeTime = time.time() - tic
node_memory = str(get_vmsize())
node_memory_rss = str(get_rss())
node_memory_peak = str(get_vmpeak())
tic = time.time()
nest.SetDefaults('static_synapse_hpc', {'delay': brunel_params['delay']})
nest.CopyModel('static_synapse_hpc', 'syn_ex',
{'weight': JE_pA})
nest.CopyModel('static_synapse_hpc', 'syn_in',
{'weight': brunel_params['g'] * JE_pA})
stdp_params['weight'] = JE_pA
nest.SetDefaults('stdp_pl_synapse_hom_hpc', stdp_params)
nest.message(M_INFO, 'build_network', 'Connecting stimulus generators.')
# Connect Poisson generator to neuron
nest.Connect(E_stimulus, E_neurons, {'rule': 'all_to_all'},
{'synapse_model': 'syn_ex'})
nest.Connect(E_stimulus, I_neurons, {'rule': 'all_to_all'},
{'synapse_model': 'syn_ex'})
nest.message(M_INFO, 'build_network',
'Connecting excitatory -> excitatory population.')
nest.Connect(E_neurons, E_neurons,
{'rule': 'fixed_indegree', 'indegree': CE,
'allow_autapses': False, 'allow_multapses': True},
{'synapse_model': 'stdp_pl_synapse_hom_hpc'})
nest.message(M_INFO, 'build_network',
'Connecting inhibitory -> excitatory population.')
nest.Connect(I_neurons, E_neurons,
{'rule': 'fixed_indegree', 'indegree': CI,
'allow_autapses': False, 'allow_multapses': True},
{'synapse_model': 'syn_in'})
nest.message(M_INFO, 'build_network',
'Connecting excitatory -> inhibitory population.')
nest.Connect(E_neurons, I_neurons,
{'rule': 'fixed_indegree', 'indegree': CE,
'allow_autapses': False, 'allow_multapses': True},
{'synapse_model': 'syn_ex'})
nest.message(M_INFO, 'build_network',
'Connecting inhibitory -> inhibitory population.')
nest.Connect(I_neurons, I_neurons,
{'rule': 'fixed_indegree', 'indegree': CI,
'allow_autapses': False, 'allow_multapses': True},
{'synapse_model': 'syn_in'})
if params['record_spikes']:
if params['num_threads'] != 1:
local_neurons = nest.GetLocalNodeCollection(E_neurons)
# GetLocalNodeCollection returns a stepped composite NodeCollection, which
# cannot be sliced. In order to allow slicing it later on, we're creating a
# new regular NodeCollection from the plain node IDs.
local_neurons = nest.NodeCollection(local_neurons.tolist())
else:
local_neurons = E_neurons
if len(local_neurons) < brunel_params['Nrec']:
nest.message(
M_ERROR, 'build_network',
"""Spikes can only be recorded from local neurons, but the
number of local neurons is smaller than the number of neurons
spikes should be recorded from. Aborting the simulation!""")
exit(1)
nest.message(M_INFO, 'build_network', 'Connecting spike recorders.')
nest.Connect(local_neurons[:brunel_params['Nrec']], E_recorder,
'all_to_all', 'static_synapse_hpc')
# read out time used for building
BuildEdgeTime = time.time() - tic
network_memory = str(get_vmsize())
network_memory_rss = str(get_rss())
network_memory_peak = str(get_vmpeak())
d = {'py_time_create': BuildNodeTime,
'py_time_connect': BuildEdgeTime,
'node_memory': node_memory,
'node_memory_rss': node_memory_rss,
'node_memory_peak': node_memory_peak,
'network_memory': network_memory,
'network_memory_rss': network_memory_rss,
'network_memory_peak': network_memory_peak}
recorders = E_recorder if params['record_spikes'] else None
return d, recorders
def run_simulation():
"""Performs a simulation, including network construction"""
nest.ResetKernel()
nest.set_verbosity(M_INFO)
if params['profile_memory']:
base_memory = str(get_vmsize())
base_memory_rss = str(get_rss())
base_memory_peak = str(get_vmpeak())
build_dict, sr = build_network()
tic = time.time()
nest.Prepare()
InitTime = time.time() - tic
init_memory = str(get_vmsize())
init_memory_rss = str(get_rss())
init_memory_peak = str(get_vmpeak())
presim_steps = int(params['presimtime'] // nest.min_delay)
presim_remaining_time = params['presimtime'] - (presim_steps * nest.min_delay)
sim_steps = int(params['simtime'] // nest.min_delay)
sim_remaining_time = params['simtime'] - (sim_steps * nest.min_delay)
total_steps = presim_steps + sim_steps + (1 if presim_remaining_time > 0 else 0) + (
1 if sim_remaining_time > 0 else 0)
times, vmsizes, vmpeaks, vmrsss = (
np.empty(total_steps), np.empty(total_steps), np.empty(total_steps), np.empty(total_steps))
step_data = {key: np.empty(total_steps) for key in step_data_keys}
tic = time.time()
for d in range(presim_steps):
nest.Run(nest.min_delay)
times[d] = time.time() - tic
vmsizes[presim_steps] = get_vmsize()
vmpeaks[presim_steps] = get_vmpeak()
vmrsss[presim_steps] = get_rss()
for key in step_data_keys:
step_data[key][d] = getattr(nest, key)
if presim_remaining_time > 0:
nest.Run(presim_remaining_time)
times[presim_steps] = time.time() - tic
vmsizes[presim_steps + sim_steps] = get_vmsize()
vmpeaks[presim_steps + sim_steps] = get_vmpeak()
vmrsss[presim_steps + sim_steps] = get_rss()
for key in step_data_keys:
step_data[key][presim_steps] = getattr(nest, key)
presim_steps += 1
PreparationTime = time.time() - tic
intermediate_kernel_status = nest.kernel_status
tic = time.time()
for d in range(sim_steps):
nest.Run(nest.min_delay)
times[presim_steps + d] = time.time() - tic
for key in step_data_keys:
step_data[key][presim_steps + d] = getattr(nest, key)
if sim_remaining_time > 0:
nest.Run(sim_remaining_time)
times[presim_steps + sim_steps] = time.time() - tic
for key in step_data_keys:
step_data[key][presim_steps + sim_steps] = getattr(nest, key)
sim_steps += 1
SimCPUTime = time.time() - tic
total_memory = str(get_vmsize())
total_memory_rss = str(get_rss())
total_memory_peak = str(get_vmpeak())
else:
build_dict, sr = build_network()
tic = time.time()
base_memory = str(get_vmsize())
nest.Prepare()
InitTime = time.time() - tic
init_memory = str(get_vmsize())
tic = time.time()
nest.Run(params['presimtime'])
PreparationTime = time.time() - tic
intermediate_kernel_status = nest.kernel_status
tic = time.time()
nest.Run(params['presimtime'])
SimCPUTime = time.time() - tic
total_memory = str(get_vmsize())
average_rate = 0.0
if params['record_spikes']:
average_rate = compute_rate(sr)
d = {'py_time_init': InitTime,
'py_time_presimulate': PreparationTime,
'py_time_simulate': SimCPUTime,
'average_rate': average_rate,
'base_memory': base_memory,
'init_memory': init_memory,
'total_memory': total_memory}
if params['profile_memory']:
memory_dict = {'base_memory_rss': base_memory_rss,
'init_memory_rss': init_memory_rss,
'total_memory_rss': total_memory_rss,
'base_memory_peak': base_memory_peak,
'init_memory_peak': init_memory_peak,
'total_memory_peak': total_memory_peak}
d.update(memory_dict)
d.update(build_dict)
final_kernel_status = nest.kernel_status
d.update(final_kernel_status)
# Subtract timer information from presimulation period
timers = ['time_collocate_spike_data', 'time_communicate_prepare', 'time_communicate_spike_data', 'time_communicate_target_data', 'time_construction_connect', 'time_construction_create', 'time_deliver_secondary_data', 'time_deliver_spike_data', 'time_gather_secondary_data', 'time_gather_spike_data', 'time_gather_target_data', 'time_omp_synchronization_construction', 'time_omp_synchronization_simulation', 'time_mpi_synchronization', 'time_simulate', 'time_update']
timers.extend([timer + '_cpu' for timer in timers])
for timer in timers:
try:
d[timer + '_presim'] = intermediate_kernel_status[timer]
if type(d[timer]) == tuple or type(d[timer]) == list:
timer_array = tuple(d[timer][tid] - intermediate_kernel_status[timer][tid] for tid in range(len(d[timer])))
d[timer] = timer_array[0]
d[timer + "_max"] = max(timer_array)
d[timer + "_max"] = min(timer_array)
d[timer + "_avg"] = np.mean(timer_array)
else:
d[timer] -= intermediate_kernel_status[timer]
except KeyError:
# KeyError if compiled without detailed timers, except time_simulate
continue
print(d)
nest.Cleanup()
fn = '{fn}_{rank}.dat'.format(fn=params['log_file'], rank=nest.Rank())
with open(fn, 'w') as f:
for key, value in d.items():
f.write(key + ' ' + str(value) + '\n')
if params['profile_memory']:
fn = '{fn}_{rank}_steps.dat'.format(fn=params['log_file'], rank=nest.Rank())
with open(fn, 'w') as f:
f.write('time ' + ' '.join(step_data_keys) + '\n')
for d in range(presim_steps + sim_steps):
f.write(str(times[d]) + ' ' + ' '.join(str(step_data[key][d]) for key in step_data_keys) + '\n')
def compute_rate(sr):
"""Compute local approximation of average firing rate
This approximation is based on the number of local nodes, number
of local spikes and total time. Since this also considers devices,
the actual firing rate is usually underestimated.
"""
n_local_spikes = sr.n_events
n_local_neurons = brunel_params['Nrec']
simtime = params['simtime']
return 1. * n_local_spikes / (n_local_neurons * simtime) * 1e3
def _VmB(VmKey):
_proc_status = '/proc/%d/status' % os.getpid()
_scale = {'kB': 1024.0, 'mB': 1024.0 * 1024.0, 'KB': 1024.0, 'MB': 1024.0 * 1024.0}
# get pseudo file /proc/<pid>/status
try:
t = open(_proc_status)
v = t.read()
t.close()
except:
return 0.0 # non-Linux?
# get VmKey line e.g. 'VmRSS: 9999 kB\n ...'
i = v.index(VmKey)
v = v[i:].split(None, 3) # whitespace
if len(v) < 3:
return 0.0 # invalid format?
# convert Vm value to bytes
return float(v[1]) * _scale[v[2]]
def get_vmsize(since=0.0):
"""Return memory usage in bytes."""
return _VmB('VmSize:') - since
def get_rss(since=0.0):
"""Return resident memory usage in bytes."""
return _VmB('VmRSS:') - since
def get_vmpeak(since=0.0):
"""Return peak memory usage in bytes."""
return _VmB('VmPeak:') - since
def lambertwm1(x):
"""Wrapper for LambertWm1 function"""
# Using scipy to mimic the gsl_sf_lambert_Wm1 function.
return sp.lambertw(x, k=-1 if x < 0 else 0).real
if __name__ == '__main__':
run_simulation()