-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBA4F.py
77 lines (68 loc) · 1.41 KB
/
BA4F.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
MASS = {
'G': 57,
'A': 71,
'S': 87,
'P': 97,
'V': 99,
'T': 101,
'C': 103,
'I': 113,
'N': 114,
'D': 115,
'K': 128,
'Q': 128,
'E': 129,
'M': 131,
'H': 137,
'F': 147,
'R': 156,
'Y': 163,
'W': 186,
'L': 113,
}
def theoretical_spectrum(peptide):
n = len(peptide)
spectrum = [peptide]
peptide += peptide
m = len(peptide)
for i in range(n):
for j in range(i, i+n-1):
spectrum.append(peptide[i:j+1])
weights = [0]
for p in spectrum:
w = 0
for ch in p:
w += MASS[ch]
weights.append(w)
return sorted(weights)
def calculate_score(spectrum_e, spectrum_t):
dic_t = {}
dic_e = {}
for num in spectrum_t:
if num not in dic_t.keys():
dic_t[num] = 1
else:
dic_t[num] += 1
for num in spectrum_e:
if num not in dic_e.keys():
dic_e[num] = 1
else:
dic_e[num] += 1
score = 0
for k in dic_e:
if k in dic_t.keys():
score += min(dic_e[k], dic_t[k])
return score
if __name__ == "__main__":
peptide = "NQEL"
spectrum_e = [0, 99, 113, 114, 128, 227, 257, 299, 355, 356, 370, 371, 484]
with open('rosalind_ba4f.txt') as file:
f = file.read().strip().split()
peptide = f[0]
f1 = f[1:]
spectrum_e = []
for n in f1:
spectrum_e.append(int(n))
spectrum_t = theoretical_spectrum(peptide)
score = calculate_score(spectrum_e, spectrum_t)
print(score)