-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_smoker.py
477 lines (374 loc) · 18.3 KB
/
test_smoker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import numpy
import json
import os
import cv2
import time
import glob
import argparse
import torch
import yaml
import pickle
import numpy as np
from backbone import EfficientDetBackbone
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, postprocess_hoi, postprocess_dense_union, postprocess_hoi_flip, postprocess_dense_union_flip
from utils.timer import Timer
from utils.visual_smoker import visual_smoker_demo
ap = argparse.ArgumentParser()
ap.add_argument('-p', '--project', type=str, default='smoker-det', help='project file that contains parameters')
ap.add_argument('-c', '--compound_coef', type=int, default=1, help='coefficients of efficientdet')
ap.add_argument('-w', '--weights', type=str, default=None, help='/path/to/weights')
ap.add_argument('--nms_threshold', type=float, default=0.5, help='nms threshold, don\'t change it if not for testing purposes')
ap.add_argument('--cuda', type=int, default=1)
ap.add_argument('--device', type=int, default=0)
ap.add_argument('--float16', type=int, default=0)
ap.add_argument('--override', type=int, default=1, help='override previous bbox results file if exists')
ap.add_argument('--data_dir', type=str, default='./datasets', help='the root folder of dataset')
ap.add_argument('--need_visual', type=int, default=1, help='whether need to visualize the results')
ap.add_argument('--flip_test', type=int, default=0, help='whether apply flip augmentation when testing')
args = ap.parse_args()
compound_coef = args.compound_coef
nms_threshold = args.nms_threshold
use_cuda = args.cuda
gpu = args.device
use_float16 = args.float16
override_prev_results = args.override
need_visual = args.need_visual
weights_path = f'./logs/smoker-detection/HOLT_best.pth' if args.weights is None else args.weights
data_dir = args.data_dir
project = args.project
save_path = "./logs/smoker-detection/test_vis"
if not os.path.exists(save_path):
os.mkdir(save_path)
params = yaml.safe_load(open(f'projects/{project}.yml'))
SET_NAME = params['val_set']
project_name = params["project_name"]
print(f'evaluation on project {project_name}, weights {weights_path}...')
params = yaml.safe_load(open(f'projects/{project}.yml'))
num_objects = 2
num_union_actions = 3
num_union_hois = 3
num_inst_actions = 6
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
input_size = input_sizes[compound_coef]
output_dir = f"./logs/{project_name}/test_results"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if args.flip_test:
detection_path = os.path.join(output_dir, f'{SET_NAME}_bbox_results_flip_final.pkl')
else:
detection_path = os.path.join(output_dir, f'{SET_NAME}_bbox_results_final.pkl')
obj_list = ['person', 'cigarette']
obj_dict = {}
cid = 0
for obj in obj_list:
if obj != "":
cid += 1
obj_dict[obj] = cid
with open(args.data_dir + "/smoker_det/annotations/verb_list.json", "r") as file:
verbs_hico = json.load(file)
verbs_dict = {}
for id, item in enumerate(verbs_hico):
verb_name = item["name"]
verbs_dict[verb_name] = id
with open(args.data_dir + "/smoker_det/annotations/hoi_list.json", "r") as file:
hois_hico = json.load(file)
verb_to_hoi = {}
for hoi_id, item in enumerate(hois_hico):
verb_id = verbs_dict[item["verb"]]
if verb_id in verb_to_hoi:
verb_to_hoi[verb_id].append(hoi_id)
else:
verb_to_hoi[verb_id] = [hoi_id]
n = 0
for verb_id in verb_to_hoi:
n += len(verb_to_hoi[verb_id])
verb_to_hoi[verb_id] = np.array(verb_to_hoi[verb_id])
assert n == num_union_hois
def calc_ioa(a, b):
# a(anchor) [boxes, (x1, y1, x2, y2)]
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)]
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
exp_x1 = np.expand_dims(a[:, 0], axis=1)
exp_x2 = np.expand_dims(a[:, 2], axis=1)
exp_y1 = np.expand_dims(a[:, 1], 1)
exp_y2 = np.expand_dims(a[:, 3], 1)
iw = np.where(exp_x2 < b[:, 2], exp_x2, b[:, 2]) - np.where(exp_x1 > b[:, 0], exp_x1, b[:, 0])
ih = np.where(exp_y2 < b[:, 3], exp_y2, b[:, 3]) - np.where(exp_y1 > b[:, 1], exp_y1, b[:, 1])
# iw = torch.clamp(iw, min=0)
# ih = torch.clamp(ih, min=0)
iw = np.where(iw > 0, iw, 0)
ih = np.where(ih > 0, ih, 0)
intersection = iw * ih
area = np.where(area > 1e-6, area, 1e-6)
IoA = intersection / area
# IoA[torch.isnan(IoA)] = 1
return IoA
def calc_iou(a, b):
# a(anchor) [boxes, (x1, y1, x2, y2)]
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)]
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
exp_x1 = np.expand_dims(a[:, 0], axis=1)
exp_x2 = np.expand_dims(a[:, 2], axis=1)
exp_y1 = np.expand_dims(a[:, 1], 1)
exp_y2 = np.expand_dims(a[:, 3], 1)
iw = np.where(exp_x2 < b[:, 2], exp_x2, b[:, 2]) - np.where(exp_x1 > b[:, 0], exp_x1, b[:, 0])
ih = np.where(exp_y2 < b[:, 3], exp_y2, b[:, 3]) - np.where(exp_y1 > b[:, 1], exp_y1, b[:, 1])
# iw = torch.clamp(iw, min=0)
# ih = torch.clamp(ih, min=0)
iw = np.where(iw > 0, iw, 0)
ih = np.where(ih > 0, ih, 0)
ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih
ua = np.where(ua > 0, ua, 1e-8)
intersection = iw * ih
IoU = intersection / ua
return IoU
def transform_class_id(id):
class_name = obj_list[id]
hico_obj_id = obj_dict[class_name]
return hico_obj_id
def transform_action_hico(act_scores, mode):
union_scores = np.zeros(num_union_actions)
for i in range(num_inst_actions//2):
if mode == "subject":
union_scores[verb_to_hoi[i]] = act_scores[i]
else:
union_scores[verb_to_hoi[i]] = act_scores[i + num_inst_actions//2]
return union_scores
def xy_to_wh(bbox):
ctr_x = (bbox[0] + bbox[2]) / 2
ctr_y = (bbox[1] + bbox[3]) / 2
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
return ctr_x, ctr_y, width, height
def fetch_location_score(anchor_bbox, obj_bbox, target_bbox, human_bbox, sigma):
xo, yo, wo, ho = xy_to_wh(obj_bbox)
xt, yt, wt, ht = xy_to_wh(target_bbox)
# xh, yh, wh, hh = xy_to_wh(human_bbox)
xa, ya, wa, ha = xy_to_wh(anchor_bbox)
dist = np.zeros(4, dtype=np.float)
dist[0] = (xo - xt) / wa
dist[1] = (yo - yt) / ha
# dist[0] = (xo - xt) / wh
# dist[1] = (yo - yt) / hh
# dist[2] = np.log(wo/wt)
# dist[3] = np.log(ho/ht)
return np.exp(-1*np.sum(dist**2)/(2*sigma**2))
def target_object_dist(target_objects_pos, objects_pos, anchors):
width = anchors[:, 2] - anchors[:, 0]
height = anchors[:, 3] - anchors[:, 1]
anchors_size = np.stack([width, height], axis=1)
anchors_size = np.expand_dims(anchors_size, axis=1)
target_objects_pos = np.expand_dims(target_objects_pos, 1)
diff = target_objects_pos - objects_pos
diff = diff / anchors_size
dist = np.sum(diff**2, axis=2)
return dist
def hoi_match(image_id, preds_inst, preds_union, human_thre=0.3, anchor_thre=0.1, loc_thre=0.05):
""" deal with the rest of the image """
num_inst = len(preds_inst["rois"])
humans = []
objects = []
human_bboxes = []
human_inst_ids = []
human_role_scores = []
human_obj_scores = []
while len(humans) == 0:
if human_thre < 0.2:
break
for inst_id in range(num_inst):
if preds_inst["obj_class_ids"][inst_id] != 0 or preds_inst["obj_scores"][inst_id] < human_thre:
continue
item = {}
item["bbox"] = preds_inst["rois"][inst_id]
item["role_scores"] = preds_inst["act_scores"][inst_id][:len(verb_to_hoi)]
# item["role_scores"] = transform_action_hico(preds_inst["act_scores"][inst_id], "subject")
item["obj_scores"] = preds_inst["obj_scores"][inst_id]
item["inst_id"] = inst_id
humans.append(item)
human_bboxes.append(item["bbox"])
human_inst_ids.append(item["inst_id"])
human_role_scores.append(item["role_scores"])
human_obj_scores.append(item["obj_scores"] )
human_thre -= 0.1
human_bboxes = np.array(human_bboxes)
human_inst_ids = np.array(human_inst_ids)
human_role_scores = np.array(human_role_scores)
human_obj_scores = np.array(human_obj_scores)
obj_role_scores = []
obj_obj_scores = []
for obj_id in range(len(preds_inst["rois"])):
item = {}
# obj_role_score = transform_action_hico(preds_inst["act_scores"][obj_id], "object")
obj_role_score = preds_inst["act_scores"][obj_id][len(verb_to_hoi):]
item["obj_role_scores"] = obj_role_score
item["obj_scores"] = preds_inst["obj_scores"][obj_id]
item["obj_class_id"] = preds_inst["obj_class_ids"][obj_id]
obj_bbox = preds_inst["rois"][obj_id]
item["bbox"] = obj_bbox
objects.append(item)
obj_role_scores.append(obj_role_score)
obj_obj_scores.append(item["obj_scores"])
object_bboxes = np.array(preds_inst["rois"])
obj_role_scores = np.array(obj_role_scores)
obj_obj_scores = np.array(obj_obj_scores)
hoi_pair_score = np.zeros((len(humans), len(preds_inst["obj_class_ids"]), num_union_actions), dtype=np.float)
if len(human_bboxes) > 0:
IoA = calc_ioa(preds_union["rois"], human_bboxes)
IoA_max = np.max(IoA, axis=1)
human_foreground = IoA_max > 0.1 # 0.25
human_IoA = IoA[human_foreground]
for key in preds_union:
preds_union[key] = preds_union[key][human_foreground]
new_IoA = calc_ioa(preds_union["rois"], preds_inst["rois"])
new_IoA_argmax = np.argmax(new_IoA, axis=1)
new_IoA[np.arange(new_IoA.shape[0]), new_IoA_argmax] = 0
new_IoA_sec_max = np.max(new_IoA, axis=1)
obj_foreground = new_IoA_sec_max > 0.1 # 0.25
for key in preds_union:
preds_union[key] = preds_union[key][obj_foreground]
human_IoU = calc_iou(preds_union["rois"], human_bboxes)
human_IoA = human_IoA[obj_foreground]
human_IoU_argmax = np.argmax(human_IoU * (human_IoA > 0.1), axis=1) # 0.25
obj_IoA = calc_ioa(preds_union["rois"], preds_inst["rois"])
num_union = len(preds_union["rois"])
num_human = len(human_bboxes)
sp_vectors = preds_union["sp_vector"]
inter_human_regions = human_bboxes[human_IoU_argmax]
humans_pos_x = (inter_human_regions[:, 0] + inter_human_regions[:, 2]) / 2
humans_pos_y = (inter_human_regions[:, 1] + inter_human_regions[:, 3]) / 2
humans_pos = np.stack([humans_pos_x, humans_pos_y], axis=1)
inter_objects_pos = humans_pos + sp_vectors
objects_pos_x = (object_bboxes[:, 0] + object_bboxes[:, 2]) / 2
objects_pos_y = (object_bboxes[:, 1] + object_bboxes[:, 3]) / 2
objects_pos = np.stack([objects_pos_x, objects_pos_y], axis=1)
obj_dists = target_object_dist(inter_objects_pos, objects_pos, preds_union["rois"])
inter_human_instids = human_inst_ids[human_IoU_argmax]
obj_dists[np.arange(num_union), inter_human_instids] = 100
obj_dists[obj_IoA < 0.1] = 100 # 0.25
inter_obj_ids = np.argmin(obj_dists, 1)
inter_obj_dist = obj_dists[np.arange(num_union), inter_obj_ids]
sigma = 0.6
location_scores = np.exp(-1 * inter_obj_dist / (2 * sigma ** 2))
location_scores = np.where(location_scores<loc_thre, 0, location_scores)
anchor_scores = preds_union["act_scores"]
anchor_scores = np.where(anchor_scores<anchor_thre, 0, anchor_scores)
inter_human_ids = human_IoU_argmax
inter_human_role_score = human_role_scores[inter_human_ids]
inst_object_role_score = obj_role_scores[inter_obj_ids]
# inter_human_obj_score = np.expand_dims(human_obj_scores[inter_human_ids],1)
# inter_obj_obj_score = np.expand_dims(obj_obj_scores[inter_obj_ids],1)
tau = 1.5
# inter_scores = 0.5 * ((inter_human_role_score + inst_object_role_score) * anchor_scores).T * location_scores
inter_scores = 0.5 * ((inter_human_role_score * inst_object_role_score) ** 0.5 * anchor_scores).T * location_scores ** tau
inter_scores = inter_scores.T
inter_scores[inst_object_role_score == 0] = 0
for human_id in range(num_human):
human_inter = inter_human_ids == human_id
human_inter_obj_id = inter_obj_ids[human_inter]
human_inter_score = inter_scores[human_inter]
for obj_id in range(num_inst):
hoi_pair_score[human_id, obj_id] = np.sum(human_inter_score[human_inter_obj_id==obj_id], axis=0)
if args.flip_test:
hoi_pair_score /= 2
hoi_cat_pair_score = np.zeros((len(humans), len(preds_inst["obj_class_ids"]), num_union_hois), dtype=np.float)
for verb in verb_to_hoi:
hoi_cat_pair_score[:, :, verb_to_hoi[verb]] = hoi_pair_score[:, :, [verb]]
dets = []
for human_id, human in enumerate(humans):
for obj_id, object in enumerate(objects):
if human["inst_id"] == obj_id:
continue
tmp = []
tmp.append(human["bbox"]) # human box
tmp.append(object["bbox"]) # object box
tmp.append(transform_class_id(object["obj_class_id"])) # object class id
tmp.append(hoi_cat_pair_score[human_id, obj_id, :]) # hoi 600 score
tmp.append(human["obj_scores"]) # human scores
tmp.append(object["obj_scores"]) # object scores
dets.append(tmp)
return dets
def img_detect(file, img_dir, model, input_size, regressBoxes, clipBoxes, threshold):
fname, ext = os.path.splitext(file)
image_id = int(fname.split("_")[-1])
img_path = os.path.join(img_dir, file)
ori_imgs, framed_imgs, framed_metas = preprocess(img_path, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
if args.flip_test:
ids = torch.arange(x.shape[-1]-1, -1, -1).long().cuda()
x_flip = x[..., ids]
x_cat = torch.cat([x, x_flip], 0)
with torch.no_grad():
if args.flip_test:
features, union_act_cls, union_sub_reg, union_obj_reg, \
inst_act_cls, inst_obj_cls, inst_bbox_reg, anchors = model(x_cat)
anchors = torch.cat([anchors, anchors], 0)
preds_union = postprocess_dense_union_flip(x_cat, anchors, union_act_cls, union_sub_reg, union_obj_reg,
regressBoxes, clipBoxes, 0.1, 1)
preds_inst = postprocess_hoi_flip(x_cat, anchors, inst_bbox_reg, inst_obj_cls, inst_act_cls,
regressBoxes, clipBoxes, threshold, nms_threshold,
mode="object", classwise=True)
else:
features, union_act_cls, union_sub_reg, union_obj_reg, \
inst_act_cls, inst_obj_cls, inst_bbox_reg, anchors = model(x)
preds_union = postprocess_dense_union(x, anchors, union_act_cls, union_sub_reg, union_obj_reg,
regressBoxes, clipBoxes, 0.1, 1)
preds_inst = postprocess_hoi(x, anchors, inst_bbox_reg, inst_obj_cls, inst_act_cls,
regressBoxes, clipBoxes, threshold, nms_threshold,
mode="object", classwise=True)
preds_inst = invert_affine(framed_metas, preds_inst)[0]
preds_union = invert_affine(framed_metas, preds_union)[0]
dets = hoi_match(image_id, preds_inst, preds_union)
if need_visual:
visual_smoker_demo(preds_inst, dets, img_path, save_path)
return dets
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, (numpy.int_, numpy.intc, numpy.intp, numpy.int8,
numpy.int16, numpy.int32, numpy.int64, numpy.uint8,
numpy.uint16, numpy.uint32, numpy.uint64)):
return int(obj)
elif isinstance(obj, (numpy.float_, numpy.float16, numpy.float32,
numpy.float64)):
return float(obj)
elif isinstance(obj, (numpy.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def test(threshold=0.2):
model = EfficientDetBackbone(num_classes=num_objects, num_union_classes=num_union_actions,
num_inst_classes=num_inst_actions, compound_coef=args.compound_coef,
ratios=eval(params["anchors_ratios"]), scales=eval(params["anchors_scales"]))
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cuda')))
model.requires_grad_(False)
model.eval()
if args.cuda:
model = model.cuda()
if args.float16:
model = model.half()
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
img_dir = os.path.join(data_dir, "smoker_det/images/%s" % "test")
_t = {'im_detect': Timer(), 'misc': Timer()}
detection = {}
count = 0
for line in glob.iglob(img_dir + '/' + '*.jpg'):
count += 1
_t['im_detect'].tic()
image_id = int(line[-8:-4])
file = "test_" + (str(image_id)).zfill(5) + ".jpg" # image name
dets = img_detect(file, img_dir, model, input_size, regressBoxes, clipBoxes, threshold=threshold)
detection[image_id] = dets # each images reflect a keys
_t['im_detect'].toc()
print('im_detect: {:d}/{:d}, image: {}, average time: {:.3f}s'.format(count, 360, file, _t['im_detect'].average_time))
with open(detection_path, "wb") as file:
pickle.dump(detection, file)
with open("./logs/smoker-detection/dets.json", "w") as file:
json.dump(detection, file, cls=NumpyEncoder)
if __name__ == '__main__':
if override_prev_results or not os.path.exists(detection_path):
test()