-
Notifications
You must be signed in to change notification settings - Fork 0
/
sliding_packing_graphs.py
201 lines (145 loc) · 7.46 KB
/
sliding_packing_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
@author: Jack Richard Grogan
___ ________ ________ ___ __ ________
|\ \|\ __ \|\ ____\|\ \|\ \ |\ ____\
\ \ \ \ \|\ \ \ \___|\ \ \/ /|_ \ \ \___|
__ \ \ \ \ __ \ \ \ \ \ ___ \ \ \ \ ___
|\ \\_\ \ \ \ \ \ \ \____\ \ \\ \ \ \ \ \|\ \
\ \________\ \__\ \__\ \_______\ \__\\ \__\ \ \_______\
\|________|\|__|\|__|\|_______|\|__| \|__| \|_______|
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerTuple
# Setting out graph colours
colors = ['k','b', 'limegreen', '#FF0000']
# Reading in data
df = pd.read_csv(r"final_paper_packing_results_sliding.csv")
df.rename({'Unnamed: 0': 'sliding_pw'}, axis=1, inplace=True)
df_sliding_pw = np.asarray(df['sliding_pw'])
s0_r0_columns = [column for column in df.columns if column.startswith("sliding_0_rolling_0")]
s1_r0_columns = [column for column in df.columns if column.startswith("sliding_1_rolling_0")]
s0_r1_columns = [column for column in df.columns if column.startswith("sliding_0_rolling_1")]
s1_r1_columns = [column for column in df.columns if column.startswith("sliding_1_rolling_1")]
df_s0_r0= df[s0_r0_columns].T
df_s1_r0= df[s1_r0_columns].T
df_s0_r1= df[s0_r1_columns].T
df_s1_r1= df[s1_r1_columns].T
# Converting data into arrays
repeats_s0_r0 = [0]*len(df_sliding_pw)
repeats_s1_r0 = [0]*len(df_sliding_pw)
repeats_s0_r1 = [0]*len(df_sliding_pw)
repeats_s1_r1 = [0]*len(df_sliding_pw)
for i in range(len(df_sliding_pw)):
repeats_s0_r0[i] = np.asarray(df_s0_r0[i])
repeats_s1_r0[i] = np.asarray(df_s1_r0[i])
repeats_s0_r1[i] = np.asarray(df_s0_r1[i])
repeats_s1_r1[i] = np.asarray(df_s1_r1[i])
data_s0_r0 = [0]*len(repeats_s0_r0[0])
data_s1_r0 = [0]*len(repeats_s1_r0[0])
data_s0_r1 = [0]*len(repeats_s0_r1[0])
data_s1_r1 = [0]*len(repeats_s1_r1[0])
for i in range(len(repeats_s0_r0[0])):
data_s0_r0[i] = np.asarray(df[s0_r0_columns[i]])
data_s1_r0[i] = np.asarray(df[s1_r0_columns[i]])
data_s0_r1[i] = np.asarray(df[s0_r1_columns[i]])
data_s1_r1[i] = np.asarray(df[s1_r1_columns[i]])
# Creating figure
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 7), layout = 'constrained')
# Creating scatterplot
scatter_s0_r0 = []
scatter_s0_r0_x_points = []
scatter_s1_r0 = []
scatter_s1_r0_x_points = []
scatter_s0_r1 = []
scatter_s0_r1_x_points = []
scatter_s1_r1 = []
scatter_s1_r1_x_points = []
for i in data_s0_r0:
for j in i:
scatter_s0_r0.append(j)
for i in range(len(data_s0_r0)):
for j in df_sliding_pw:
scatter_s0_r0_x_points.append(j)
for i in data_s1_r0:
for j in i:
scatter_s1_r0.append(j)
for i in range(len(data_s1_r0)):
for j in df_sliding_pw:
scatter_s1_r0_x_points.append(j)
for i in data_s0_r1:
for j in i:
scatter_s0_r1.append(j)
for i in range(len(data_s0_r1)):
for j in df_sliding_pw:
scatter_s0_r1_x_points.append(j)
for i in data_s1_r1:
for j in i:
scatter_s1_r1.append(j)
for i in range(len(data_s1_r1)):
for j in df_sliding_pw:
scatter_s1_r1_x_points.append(j)
s1 = plt.scatter(scatter_s0_r0_x_points, scatter_s0_r0, color = colors[0], alpha = 0.4, marker = 'x')#, label = "Particle-Particle SLiding Friction = 0 \nParticle-Particle Rolling Friction = 0 ")
s2 = plt.scatter(scatter_s1_r0_x_points, scatter_s1_r0, color = colors[1], alpha = 0.4, marker = 'x')#, label = "Particle-Particle SLiding Friction = 1 \nParticle-Particle Rolling Friction = 0 ")
s3 = plt.scatter(scatter_s0_r1_x_points, scatter_s0_r1, color = colors[2], alpha = 0.4, marker = 'x')#, label = "Particle-Particle SLiding Friction = 0 \nParticle-Particle Rolling Friction = 1 ")
s4 = plt.scatter(scatter_s1_r1_x_points, scatter_s1_r1, color = colors[3], alpha = 0.4, marker = 'x')#, label = "Particle-Particle SLiding Friction = 1 \nParticle-Particle Rolling Friction = 1")
# Creating line plot of means
mean_s0_r0 = []
std_s0_r0 = []
mean_s1_r0 = []
std_s1_r0 = []
mean_s0_r1 = []
std_s0_r1 = []
mean_s1_r1 = []
std_s1_r1 = []
for i in repeats_s0_r0:
mean_s0_r0.append(np.mean(i))
std_s0_r0.append(np.std(i))
for i in repeats_s1_r0:
mean_s1_r0.append(np.mean(i))
std_s1_r0.append(np.std(i))
for i in repeats_s0_r1:
mean_s0_r1.append(np.mean(i))
std_s0_r1.append(np.std(i))
for i in repeats_s1_r1:
mean_s1_r1.append(np.mean(i))
std_s1_r1.append(np.std(i))
# Creating shade of +- 1 standard deviation either side of the mean
top_line_s0_r0 = np.asarray(mean_s0_r0) + np.asarray(std_s0_r0)
bottom_line_s0_r0 = np.asarray(mean_s0_r0) - np.asarray(std_s0_r0)
top_line_s1_r0 = np.asarray(mean_s1_r0) + np.asarray(std_s1_r0)
bottom_line_s1_r0 = np.asarray(mean_s1_r0) - np.asarray(std_s1_r0)
top_line_s0_r1 = np.asarray(mean_s0_r1) + np.asarray(std_s0_r1)
bottom_line_s0_r1 = np.asarray(mean_s0_r1) - np.asarray(std_s0_r1)
top_line_s1_r1 = np.asarray(mean_s1_r1) + np.asarray(std_s1_r1)
bottom_line_s1_r1 = np.asarray(mean_s1_r1) - np.asarray(std_s1_r1)
p1, = plt.plot(df_sliding_pw, mean_s0_r0, color = colors[0], linewidth = 0.7)
f1 = plt.fill_between(df_sliding_pw, top_line_s0_r0, bottom_line_s0_r0, color=colors[0], alpha=.2)#, label = '1 Standard Deviation')
p2, = plt.plot(df_sliding_pw, mean_s1_r0, color = colors[1], linewidth = 0.7)
f2 = plt.fill_between(df_sliding_pw, top_line_s1_r0, bottom_line_s1_r0, color=colors[1], alpha=.2)#, label = '1 Standard Deviation')
p3, = plt.plot(df_sliding_pw, mean_s0_r1, color = colors[2], linewidth = 0.7)
f3 = plt.fill_between(df_sliding_pw, top_line_s0_r1, bottom_line_s0_r1, color=colors[2], alpha=.2)#, label = '1 Standard Deviation')
p4, = plt.plot(df_sliding_pw, mean_s1_r1, color = colors[3], linewidth = 0.7)
f4 = plt.fill_between(df_sliding_pw, top_line_s1_r1, bottom_line_s1_r1, color=colors[3], alpha=.2)#, label = '1 Standard Deviation')
# Figure formatting
plt.grid(which='major', color='k', linestyle='-', alpha = 0.5)
plt.grid(which='minor', color='black', linestyle='-', alpha = 0.2)
plt.minorticks_on()
plt.xlim([0,1])
plt.ylim([0.55,0.67])
plt.tick_params(axis = 'both', labelsize = 11.5)
plt.xlabel("Particle-Wall Sliding Friction Coefficient (-)", fontsize = 11.5)
plt.ylabel("Final Packing Density (-)", fontsize = 11.5)
handles, labels = ax.get_legend_handles_labels()
legend_points = [(p1, s1), f1, (p2, s2), f2, (p3, s3), f3, (p4, s4), f4]
legend_labels = ["Particle-Particle: \nSliding Friction = 0 \nRolling Friction = 0",
"1 Standard \nDeviation",
"Particle-Particle \nSliding Friction = 1 \nRolling Friction = 0",
"1 Standard \nDeviation",
"Particle-Particle: \nSliding Friction = 0 \nRolling Friction = 1",
"1 Standard \nDeviation",
"Particle-Particle: \nSliding Friction = 1 \nRolling Friction = 1 ",
"1 Standard \nDeviation"]
plt.legend(legend_points, legend_labels, loc="upper left", bbox_to_anchor =(1, 1), ncol = 1, numpoints=8, handler_map={tuple: HandlerTuple(ndivide=None)}, frameon = False, labelspacing=1.9, fontsize = 11.5)
plt.savefig('method_1_procedure_1_sliding_graph', bbox_inches="tight")