-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparameterRecord.py
42 lines (39 loc) · 1.71 KB
/
hyperparameterRecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Written By : Jonathan O. Tellechea
# Adviser : Mike Hance, Phd
# Research : Using a neural network to maximize the significance of tttHH production.
# Description: This script keeps a record of trained NN; Keeps track of time , AUC , lenght of NN etc.
# The filename for the saved weights is displayed to be used in loadNN.py to create plots.
# Reference :http://cdsweb.cern.ch/record/2220969/files/ATL-PHYS-PUB-2016-023.pdf
###########################################################################################################################
# Imported packages.
import pandas as pd
import numpy as np
import argparse
####work in progress to automate script
# parser = argparse.ArgumentParser(description="Plot 1D plots of sig/bac")
# parser.add_argument("--file", type=str, help="Use '--file=' followed by a *.h5 file")
# args = parser.parse_args()
# file = "data/" + str(args.file)
# file = 'hyperparameterRecord_v3.csv'
# file = 'fiveLayerDropout_2.csv'
# file = 'fiveLayerDropout_3.csv'
# modelParam = ['NN Archi.','#Br.','LR','Batch','AUC','Avg.P','Y/M/D @ H:M','ConfusionMatrix [TP FP] [FN TN]','Score','Max Signif','nsig','nbkg']
# modelParam = ['NN Archi.','#Br.','LR','Batch','AUC','Avg.P','Run Time','ConfusionMatrix [TP FP] [FN TN]','Score','Max Signif','nsig','nbkg']#######
# file = 'csv/0_10_jets.csv'
# file = 'csv/jet.csv'
# file = 'csv/tenlayers.csv'
# file = 'csv/highlevelvariables.csv'
file = 'csv/aug.csv'
modelParam = [
'FileName',
"ConfusionMatrix [TP FP] [FN TN]",
"Run Time",
"AUC",
"Avg.P",
"Score",
"Max Signif",
"nsig",
"nbkg"
]
data = pd.read_csv(file)
print(data.to_string(justify='right',columns=modelParam,header=True,index=1))