forked from livepeer/ai-worker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bench.py
232 lines (187 loc) · 7.11 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""This script benchmarks GPU memory usage and inference time for various AI pipelines.
"""
import argparse
import os
from time import time
from typing import List, Any
import numpy as np
import torch
from app.main import load_pipeline
from app.pipelines.base import Pipeline
from PIL import Image
from pydantic import BaseModel
from pathlib import Path
from starlette.datastructures import UploadFile
CURRENT_DIR = Path(__file__).parent
PROMPT = "a mountain lion"
EXAMPLE_IMAGE_PATH = Path(CURRENT_DIR, "example_data/image.png")
EXAMPLE_IMAGE_LOW_RES_PATH = Path(CURRENT_DIR, "example_data/image-low-res.png")
EXAMPLE_AUDIO_FILE_PATH = Path(CURRENT_DIR, "example_data/test_audio.flac")
def create_upload_file(file_path: Path) -> UploadFile:
"""Creates an UploadFile object from a file path.
Args:
file_path: The path to the file.
Returns:
UploadFile: The UploadFile object.
"""
try:
return UploadFile(filename=file_path.name, file=open(file_path, "rb"))
except IOError as e:
print(f"Error opening file {file_path}: {e}")
raise
def get_example_input(pipeline_name: str) -> dict:
"""Returns example input for the specified pipeline.
Args:
pipeline_name: The name of the pipeline.
Returns:
dict: A dictionary containing example input for the specified pipeline.
Raises:
NotImplementedError: If example input is not implemented for the specified
pipeline.
"""
try:
image_path = (
EXAMPLE_IMAGE_LOW_RES_PATH
if "UpscalePipeline" in pipeline_name
else EXAMPLE_IMAGE_PATH
)
example_image = Image.open(image_path).convert("RGB")
except IOError as e:
print(f"Error opening image file {EXAMPLE_IMAGE_PATH}: {e}")
raise
example_inputs = {
"AudioToTextPipeline": {"audio": create_upload_file(EXAMPLE_AUDIO_FILE_PATH)},
"TextToImagePipeline": {"prompt": PROMPT},
"ImageToImagePipeline": {"prompt": PROMPT, "image": example_image},
"ImageToVideoPipeline": {"image": example_image},
"UpscalePipeline": {"prompt": PROMPT, "image": example_image},
"SegmentAnything2Pipeline": {"image": example_image},
}
if pipeline_name not in example_inputs:
raise NotImplementedError(
f"Example input not implemented for this pipeline: {pipeline_name}"
)
return example_inputs[pipeline_name]
class BenchMetrics(BaseModel):
"""A class to store benchmarking metrics."""
inference_time: float
max_mem_allocated: float
max_mem_reserved: float
def call_pipeline(pipeline: Pipeline, **kwargs) -> List[Any]:
"""Calls a pipeline with example inputs.
Args:
pipeline: The pipeline to call.
**kwargs: Additional keyword arguments to pass to the pipeline.
Returns:
List: The output of the pipeline.
"""
example_kwargs = get_example_input(pipeline.__class__.__name__)
kwargs.update(example_kwargs)
return pipeline(**kwargs)
def bench_pipeline(
pipeline: Pipeline,
runs: int = 1,
num_inference_steps: int = None,
) -> BenchMetrics:
"""Benchmarks a pipeline by calling it multiple times and collecting metrics.
Args:
pipeline: The pipeline to benchmark.
runs: The number of times to call the pipeline.
num_inference_steps: The number of inference steps to run for the pipeline.
Returns:
BenchMetrics: The benchmarking metrics.
"""
inference_time = np.zeros(runs)
max_mem_allocated = np.zeros(runs)
max_mem_reserved = np.zeros(runs)
kwargs = (
{"num_inference_steps": num_inference_steps}
if num_inference_steps is not None
else {}
)
for i in range(runs):
start = time()
output = call_pipeline(pipeline, **kwargs)
if isinstance(output, tuple):
output = output[0]
inference_time[i] = time() - start
max_mem_allocated[i] = torch.cuda.max_memory_allocated() / 1024**3
max_mem_reserved[i] = torch.cuda.max_memory_reserved() / 1024**3
print(f"inference {i+1} time: {inference_time[i]:.3f}s")
print(
f"inference {i+1} max GPU memory allocated: {max_mem_allocated[i]:.3f}GiB"
)
print(f"inference {i+1} max GPU memory reserved: {max_mem_reserved[i]:.3f}GiB")
return BenchMetrics(
inference_time=inference_time.mean(),
max_mem_allocated=max_mem_allocated.mean(),
max_mem_reserved=max_mem_reserved.mean(),
)
def main():
parser = argparse.ArgumentParser(description="A benchmarking tool for AI pipelines")
parser.add_argument(
"--pipeline", type=str, required=True, help="the name of the pipeline"
)
parser.add_argument(
"--model_id",
type=str,
required=True,
help="the ID of the model to load for the pipeline",
)
parser.add_argument(
"--runs",
type=int,
default=1,
required=False,
help="the number of times to call the pipeline",
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=None,
required=False,
help=(
"the number of inference steps to run for the pipeline. Not all pipelines "
"support this.",
),
)
args = parser.parse_args()
print("Starting benchmark...")
args_dict = vars(args)
print_parts = [
f"{key}={value}" for key, value in args_dict.items() if value is not None
]
print(", ".join(print_parts))
start = time()
pipeline = load_pipeline(args.pipeline, args.model_id)
# Collect pipeline load metrics.
load_time = time() - start
load_max_mem_allocated = torch.cuda.max_memory_allocated() / 1024**3
load_max_mem_reserved = torch.cuda.max_memory_reserved() / 1024**3
# Collect pipeline warmup metrics if stable-fast is enabled.
if os.getenv("SFAST", "").strip().lower() == "true":
warmups = 3
warmup_metrics = bench_pipeline(pipeline, warmups, args.num_inference_steps)
# Collect pipeline inference metrics.
metrics = bench_pipeline(pipeline, args.runs, args.num_inference_steps)
print("\n")
print("----AGGREGATE METRICS----")
print("\n")
print(f"pipeline load time: {load_time:.3f}s")
print(f"pipeline load max GPU memory allocated: {load_max_mem_allocated:.3f}GiB")
print(f"pipeline load max GPU memory reserved: {load_max_mem_reserved:.3f}GiB")
if os.getenv("SFAST", "").strip().lower() == "true":
print(f"avg warmup inference time: {warmup_metrics.inference_time:.3f}s")
print(
f"avg warmup inference max GPU memory allocated: "
f"{warmup_metrics.max_mem_allocated:.3f}GiB"
)
print(
f"avg warmup inference max GPU memory reserved: "
f"{warmup_metrics.max_mem_reserved:.3f}GiB"
)
print(f"avg inference time: {metrics.inference_time:.3f}s")
print(f"avg inference max GPU memory allocated: {metrics.max_mem_allocated:.3f}GiB")
print(f"avg inference max GPU memory reserved: {metrics.max_mem_reserved:.3f}GiB")
if __name__ == "__main__":
main()