forked from danaj/Math-Prime-Util
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_prime.c
145 lines (129 loc) · 4.08 KB
/
random_prime.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <stdio.h>
#include <stdlib.h>
#include "csprng.h"
#include "primality.h"
#include "util.h"
#include "prime_nth_count.h"
#include "lmo.h"
#include "mulmod.h"
#include "constants.h"
#include "random_prime.h"
UV random_nbit_prime(void* ctx, UV b)
{
uint32_t start = 0, range;
UV n, p;
switch (b) {
case 0:
case 1: return 0;
case 2: return urandomb(ctx,1) ? 2 : 3;
case 3: return urandomb(ctx,1) ? 5 : 7;
case 4: return urandomb(ctx,1) ? 11 : 13;
case 5: start = 7; range = 5; break;
case 6: start = 12; range = 7; break;
case 7: start = 19; range = 13; break;
case 8: start = 32; range = 23; break;
case 9: start = 55; range = 43; break;
default: break;
}
if (start)
return nth_prime(start + urandomm32(ctx,range));
if (b > BITS_PER_WORD)
return 0;
/* Trivial method */
p = (UVCONST(1) << (b-1)) + 1;
while (1) {
n = p + (urandomb(ctx,b-2) << 1);
if (is_prob_prime(n))
return n;
}
}
UV random_ndigit_prime(void* ctx, UV d)
{
UV lo, hi;
if ( (d == 0) || (BITS_PER_WORD == 32 && d >= 10) || (BITS_PER_WORD == 64 && d >= 20) ) return 0;
if (d == 1) return nth_prime(1 + urandomm32(ctx,4));
if (d == 2) return nth_prime(5 + urandomm32(ctx,21));
lo = powmod(10,d-1,UV_MAX)+1;
hi = 10*lo-11;
while (1) {
UV n = (lo + urandomm64(ctx,hi-lo+1)) | 1;
if (is_prob_prime(n))
return n;
}
}
UV random_prime(void* ctx, UV lo, UV hi)
{
UV n, oddrange;
if (lo > hi) return 0;
/* Pull edges in to nearest primes */
lo = (lo <= 2) ? 2 : next_prime(lo-1);
hi = (hi >= MPU_MAX_PRIME) ? MPU_MAX_PRIME : prev_prime(hi+1);
if (lo > hi) return 0;
/* There must be at least one prime in the range */
if (!(lo&1)) lo--; /* treat 2 as 1 */
oddrange = ((hi-lo)>>1) + 1; /* look for odds */
while (1) {
n = lo + 2 * urandomm64(ctx, oddrange);
if (n == 1 || is_prob_prime(n))
return (n == 1) ? 2 : n;
}
}
/* Note that 7 chosen bases or the first 12 prime bases are enough
* to guarantee sucess. We could choose to limit to those. */
int is_mr_random(void* ctx, UV n, UV k) {
if (k >= 3*(n/4))
return is_prob_prime(n);
/* TODO: do 16 at a time */
while (k--) {
UV base = 2 + urandomm64(ctx, n-2);
if (!miller_rabin(n, &base, 1))
return 0;
}
return 1;
}
UV random_semiprime(void* ctx, UV b) { /* Even split of bits */
static const uint16_t small_semi[] = {35,35,49,65,77,91,143,143,169,299,319,341,377,403};
UV min, max, n, L, N;
if (b < 4 || b > BITS_PER_WORD)
return 0;
switch (b) {
case 4: return 9;
case 5: return 21;
case 6: return small_semi[ 0 + urandomm32(ctx,3) ];
case 7: return small_semi[ 3 + urandomm32(ctx,3) ];
case 8: return small_semi[ 6 + urandomm32(ctx,3) ];
case 9: return small_semi[ 9 + urandomm32(ctx,5) ];
default: break;
}
min = UVCONST(1) << (b-1);
max = min + (min-1);
L = b / 2;
N = b - L;
do {
n = random_nbit_prime(ctx,L) * random_nbit_prime(ctx,N);
} while (n < min || n > max);
return n;
}
UV random_unrestricted_semiprime(void* ctx, UV b) { /* generic semiprime */
static const unsigned char small_semi[] = {4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,106,111,115,118,119,121,122,123};
UV min, n;
if (b < 3 || b > BITS_PER_WORD)
return 0;
switch (b) {
case 3: return small_semi[ 0 + urandomm32(ctx, 2) ];
case 4: return small_semi[ 2 + urandomm32(ctx, 4) ];
case 5: return small_semi[ 6 + urandomm32(ctx, 4) ];
case 6: return small_semi[ 10 + urandomm32(ctx,12) ];
case 7: return small_semi[ 22 + urandomm32(ctx,20) ];
default: break;
}
/* There are faster ways to generate if we could be lax on distribution.
* Picking a random prime followed by a second that makes a semiprime in
* the range seems obvious and is fast, but the distribution is wrong.
* With that method, some semiprimes are much more likely than others. */
min = UVCONST(1) << (b-1);
do {
n = min + urandomb(ctx,b-1);
} while (!is_semiprime(n));
return n;
}