-
Notifications
You must be signed in to change notification settings - Fork 0
/
staircasing.py
210 lines (170 loc) · 7 KB
/
staircasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from psychopy import core, visual, event, gui
from psychopy.event import Mouse
import random
import csv
import pandas as pd
import os
VIDEO_JUMP_START = 0.5
main_start_time = core.getTime()
# Initialize window
win = visual.Window([800, 600], color=(1, 1, 1))
# Initialize mouse
mouse = Mouse(win=win)
# Load the .avi video
video_path = './materials/Animation.avi'
video = visual.MovieStim3(win, video_path, size=(800, 600), flipVert=False, flipHoriz=False, loop=True)
#get video frame rate
frame_rate = video.getFPS()
# Create an occluder stimulus
occluder = visual.Rect(win, width=800, height=600, fillColor='black')
# Initial conditions
initial_jump_duration = VIDEO_JUMP_START
step_size = 0.05
max_trials = 100
reversals = 0
max_reversals = 50
correct_in_a_row = 0
incorrect_in_a_row = 0
pos_reversal_criteria = 2
neg_reversal_criteria = 1
def detect_mouseclick(mouse):
buttons = mouse.getPressed()
if any(buttons):
return True, core.getTime()-main_start_time # Record the click time
return False, None # Return None if no click occurred
def simulate_eyelid_closure(win, duration=0.3, video_jump=1):
# Simulate eyelid closure by smoothly fading in and out the occluder
start_time = core.getTime()
occluder.autoDraw = True
video.autoDraw = False
win.flip()
video.pause()
video.seek((video.getCurrentFrameTime() + video_jump) % video.duration) # Jump forward or backward in the video
video.play()
occluder.autoDraw = False
core.wait(core.getTime() + duration - start_time)
end_time = core.getTime()
video.autoDraw = True
win.flip()
return start_time, end_time
def check_response(cycle_number, video_jump, space_click_time, occ_end_time, IsJump, IsDetected, response_data):
global reversals
global correct_in_a_row
global incorrect_in_a_row
if cycle_number > 0:
video_jump_old = video_jump
response_speed = space_click_time - occ_end_time
if IsJump and IsDetected:
response_type = 'correct'
correct_in_a_row += 1
incorrect_in_a_row = 0
if correct_in_a_row >= pos_reversal_criteria:
reversals += 1
correct_in_a_row = 0
video_jump = max(video_jump - step_size, 0)
elif IsJump and not IsDetected:
response_speed = None
response_type = 'missed'
incorrect_in_a_row += 1
correct_in_a_row = 0
if incorrect_in_a_row >= neg_reversal_criteria:
reversals += 1
incorrect_in_a_row = 0
video_jump += step_size
elif not IsJump and IsDetected:
response_type = 'false positive'
correct_in_a_row = 0
incorrect_in_a_row +=1
if incorrect_in_a_row >= neg_reversal_criteria:
reversals += 1
incorrect_in_a_row = 0
video_jump += step_size
else: # not IsJump and not IsDetected
response_speed = None
response_type = 'correct rejection'
correct_in_a_row +=1
incorrect_in_a_row = 0
if correct_in_a_row >= pos_reversal_criteria:
reversals += 1
correct_in_a_row = 0
video_jump = max(video_jump - step_size, 0)
response_data = response_data._append({'time': core.getTime() - main_start_time, 'video_jump': video_jump_old, 'response_speed': response_speed, 'response_type': response_type}, ignore_index=True)
cycle_number += 1
return cycle_number, video_jump, response_data
def main_experiment(win):
frame_number = 0
PLAY = True
global main_start_time
main_start_time = core.getTime()
video_jump = initial_jump_duration
cycle_number = 0
IsJump = False
IsDetected = False
event_data = pd.DataFrame(columns=['event_type', 'time'])
response_data = pd.DataFrame(columns=['time', 'video_jump', 'response_speed', 'response_type'])
space_click_time = main_start_time
occ_end_time = 0
# Define the dictionary to store participant data
participant_data = {'participant_id': ''}
# Create a dialogue box
dlg = gui.DlgFromDict(dictionary=participant_data, title="Participant Data")
# Check if the user pressed OK or Cancel
if dlg.OK:
print("Participant Data:", participant_data)
else:
print("User cancelled")
# create a folder with the participant ID and save the data there
global folder_path
folder_path = os.path.join('data', participant_data['participant_id'])
# Check if the folder exists, if not, create it
if not os.path.exists(folder_path):
os.makedirs(folder_path)
global reversals
global correct_in_a_row
global incorrect_in_a_row
while cycle_number < max_trials and reversals < max_reversals:
# Draw the video frame
video.draw()
# On average, blinks occur roughly every 2-10 seconds
time_since_last_blink = core.getTime() - occ_end_time - main_start_time
# Add a refractory period of 1 second between blink events
if time_since_last_blink > 2 and random.random() < 1/frame_rate/5:
# Check if there was a response to the previous jump
cycle_number, video_jump, response_data = check_response(cycle_number, video_jump, space_click_time, occ_end_time, IsJump, IsDetected, response_data)
# Randomly choose whether there is a jump or not
if random.random() < 0.5:
IsDetected = False
IsJump = True
occ_start_time, occ_end_time = simulate_eyelid_closure(win, video_jump=video_jump)
occ_start_time -= main_start_time
occ_end_time -= main_start_time
else:
IsDetected = False
IsJump = False
occ_start_time, occ_end_time = simulate_eyelid_closure(win, video_jump=0)
occ_start_time -= main_start_time
occ_end_time -= main_start_time
event_data = event_data._append({'event_type': 'blink_start', 'time': occ_start_time}, ignore_index=True)
event_data = event_data._append({'event_type': 'blink_end', 'time': occ_end_time}, ignore_index=True)
win.flip()
# Collect responses on spacebar press
if 'space' in event.getKeys():
space_click_time = core.getTime() - main_start_time
# Check whether there has been a jump
if space_click_time - occ_end_time < 2:
IsDetected = True
# Increment frame number
frame_number += 1
# Exit after 1 minute
if core.getTime() - main_start_time > 180:
print("Max time reached, exiting...")
break
return event_data, response_data
# Run the main experiment
event_data, response_data = main_experiment(win)
# Save data to csv
event_data.to_csv(os.path.join(folder_path, 'event_data.csv'))
response_data.to_csv(os.path.join(folder_path, 'response_data.csv'))
# Clean up
win.close()
core.quit()