-
Notifications
You must be signed in to change notification settings - Fork 1
/
notes-txt.txt
55 lines (42 loc) · 1.01 KB
/
notes-txt.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
5x5 gaussian blur
# so this, below, is an approximation or .. what the heck is it?
2 4 5 . .
4 9 12 . .
5 12 15
. . . .
etc
divided by 159
Seems to say it all, including relationship to sigma
http://www.mvtec.com/halcon/download/documentation/reference/hdevelop/binomial_filter.html
sigma = sqrt(n-1)/2
n | sigma
-------------
3 | 0.7523
5 | 1.0317
7 | 1.2505
9 | 1.4365
11 | 1.6010
13 | 1.7502
15 | 1.8876
17 | 2.0157
19 | 2.1361
21 | 2.2501
23 | 2.3586
25 | 2.4623
27 | 2.5618
29 | 2.6576
31 | 2.7500
33 | 2.8395
35 | 2.9262
37 | 3.0104
http://books.google.com/books?id=b1s4N98t3ucC&pg=PA124&lpg=PA124&dq=binomial+mask+gaussian&source=web&ots=luMR733hLa&sig=uu7Bh_wt77lrbhTLC5fLtaoyrWA&hl=en&sa=X&oi=book_result&resnum=5&ct=result#PPA124,M1
u = Matrix([1,4,6,4,1])
g = u.transpose() * u
sage: g
[ 1 4 6 4 1]
[ 4 16 24 16 4]
[ 6 24 36 24 6]
[ 4 16 24 16 4]
[ 1 4 6 4 1]
Specifically Hessian theory...
http://www.cs.utah.edu/~gk/MS/html/node14.html#eq:2dd2