-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflu_shot_learning-GENERAL.py
183 lines (93 loc) · 4.13 KB
/
flu_shot_learning-GENERAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
from pathlib import Path
root = Path(".")
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set()
plt.rcParams['figure.figsize'] = [8.0, 8.0]
plt.rcParams['figure.dpi'] = 120
# In[2]:
X_train_full = pd.read_csv('input_data\\training_set_features.csv', index_col = 'respondent_id')
y_train_full = pd.read_csv('input_data\\training_set_labels.csv', index_col = 'respondent_id')
# In[3]:
X_test = pd.read_csv('input_data\\test_set_features.csv', index_col = 'respondent_id')
# # Loading Help Functions
# In[4]:
def simplify_col_names(df):
df['income_poverty'].replace('Below Poverty', 'Low', inplace = True)
df['income_poverty'].replace('<= $75,000, Above Poverty', 'Medium', inplace = True)
df['income_poverty'].replace('> $75,000', 'High', inplace = True)
df['age_group'].replace('65+ Years', '65+', inplace = True)
df['age_group'].replace('55 - 64 Years', '55+', inplace = True)
df['age_group'].replace('45 - 54 Years', '45+', inplace = True)
df['age_group'].replace('35 - 44 Years', '35+', inplace = True)
df['age_group'].replace('18 - 34 Years', '18+', inplace = True)
df['education'].replace('College Graduate', 'Very High', inplace = True)
df['education'].replace('Some College', 'High', inplace = True)
df['education'].replace('12 Years', 'Medium', inplace = True)
df['education'].replace('< 12 Years', 'Low', inplace = True)
# In[5]:
def engineer_features(df):
behavioral_cols = ['behavioral_antiviral_meds',
'behavioral_avoidance',
'behavioral_face_mask',
'behavioral_wash_hands',
'behavioral_large_gatherings',
'behavioral_outside_home',
'behavioral_touch_face']
#df['general_behavior'] = pd.Series(np.zeros(df.shape[0]), index = df.index)
#for b_col in behavioral_cols:
# df['general_behavior'] += df[b_col]
df['general_effective'] = df['opinion_h1n1_vacc_effective'] + df['opinion_seas_vacc_effective']
df['general_risk'] = df['opinion_h1n1_risk'] + df['opinion_seas_risk']
df['general_eff_risk'] = df['general_effective'] + df['general_risk']
df['general_reccomendation'] = df['doctor_recc_h1n1'] + df['doctor_recc_seasonal']
df['general_h1n1_info'] = df['h1n1_concern'] + df['h1n1_knowledge']
df['household_total'] = df['household_adults'] + df['household_children'] + df['child_under_6_months'] + 1
# # Loading Models
# In[6]:
preprocessor_seas = pickle.load(open('models\\preprocessor_seas.pkl', 'rb'))
preprocessor_h1n1 = pickle.load(open('models\\preprocessor_h1n1.pkl', 'rb'))
# In[7]:
estimator_h1n1 = pickle.load(open('models\\estimator_h1n1.pkl', 'rb'))
estimator_seas = pickle.load(open('models\\estimator_seas.pkl', 'rb'))
# # Modelling
# Build final pipelines:
# In[8]:
from sklearn.pipeline import Pipeline
full_pipeline_h1n1 = Pipeline(steps=[('preprocessor', preprocessor_h1n1),
('estimator', estimator_h1n1)])
full_pipeline_seas = Pipeline(steps=[('preprocessor', preprocessor_seas),
('estimator', estimator_seas)])
# Prepare input data:
# In[9]:
simplify_col_names(X_train_full)
# In[10]:
engineer_features(X_train_full)
# Fit pipeline to full train data:
# In[11]:
full_pipeline_h1n1.fit(X_train_full, y_train_full['h1n1_vaccine'])
# In[12]:
full_pipeline_seas.fit(X_train_full, y_train_full['seasonal_vaccine'])
# # Making predictions
# In[13]:
simplify_col_names(X_test)
# In[14]:
engineer_features(X_test)
# In[15]:
pred_h1n1 = full_pipeline_h1n1.predict_proba(X_test)[:, 1]
pred_seas = full_pipeline_seas.predict_proba(X_test)[:, 1]
predictions = pd.DataFrame({'respondent_id': X_test.index,
'h1n1_vaccine': pred_h1n1,
'seasonal_vaccine': pred_seas
})
# In[16]:
predictions
# In[17]:
predictions.to_csv('output_data\\predictions.csv', index = False)