forked from Jameskry/LUNA16_Challange_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProvider.py
94 lines (74 loc) · 2.74 KB
/
Provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import SimpleITK as sitk
import numpy as np
import csv
import tensorflow as tf
from datetime import datetime
def load_itk_image(filename):
itkimage = sitk.ReadImage(filename)
numpyImage = sitk.GetArrayFromImage(itkimage)
numpyOrigin = np.array(list(reversed(itkimage.GetOrigin())))
numpySpacing = np.array(list(reversed(itkimage.GetSpacing())))
return numpyImage, numpyOrigin, numpySpacing
def readCSV(filename):
lines = []
with open(filename, "r") as f:
csvreader = csv.reader(f)
for line in csvreader:
lines.append(line)
return lines
def worldToVoxelCoord(worldCoord, origin, spacing):
strechedVoxelCoord = np.absolute(worldCoord - origin)
voxelCoord = strechedVoxelCoord / spacing
return voxelCoord
def normalizePlanes(npzarray):
maxHU = 400.
# maxHU = np.amax(npzarray)
minHU = -1000.
# minHU = np.amin(npzarray)
npzarray = (npzarray - minHU) / (maxHU - minHU)
npzarray[npzarray > 1] = 1.
npzarray[npzarray < 0] = 0.
return npzarray
def writeToDebugFile(message):
logFile = open('log_main.txt', 'a')
logFile.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S')+' -> '+ message + '\n')
logFile.close()
def mixArrays(firstArray, secondArray):
resultList = []
for i in range(2 * len(firstArray)):
if i % 2 == 0:
resultList.append(firstArray[int(i / 2)])
else:
resultList.append(secondArray[int(i / 2)])
return resultList
def mixArraysNumpy(firstArray, secondArray):
for i in range(2 * len(firstArray)):
if (i == 0):
tempArray = firstArray[0]
result = np.array(tempArray[np.newaxis,...])
elif i % 2 == 0:
tempArray = firstArray[int(i / 2)]
result = np.concatenate((result, tempArray[np.newaxis,...]), axis=0)
else:
tempArray = secondArray[int(i / 2)]
result = np.concatenate((result, tempArray[np.newaxis,...]), axis=0)
return result
def mixArraysNumpy2(firstArray, secondArray, zDimension, xyDimension):
result = np.empty([2*len(firstArray), zDimension, xyDimension, xyDimension])
for i in range(2 * len(firstArray)):
if i % 2 == 0:
result[i] = firstArray[int(i / 2)]
else:
result[i] = secondArray[int(i / 2)]
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def makeOutputArray(output):
if (output == 0):
return np.array([1, 0])
else:
return np.array([0, 1])