You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. I have searched related issues but cannot get the expected help.
2. The bug has not been fixed in the latest version.
3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
Llama-3.2-1B-Instruct does not supported kvin4, is that expected?
sys.platform: linux
Python: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.3.0+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.7
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.18.0+cu118
LMDeploy: 0.6.2+21f2866
transformers: 4.46.2
gradio: 5.5.0
fastapi: 0.115.4
pydantic: 2.9.2
triton: 2.3.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 0-27,56-83 0
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 0-27,56-83 0
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 28-55,84-111 1
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 28-55,84-111 1
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 28-55,84-111 1
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X 28-55,84-111 1
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
Convert to turbomind format: 0%|| 0/16 [00:00<?, ?it/s]
Convert to turbomind format: 6%|▋ | 1/16 [00:00<00:11, 1.36it/s]
Convert to turbomind format: 69%|██████▉ | 11/16 [00:00<00:00, 17.35it/s]
[WARNING] gemm_config.in is not found; using default GEMM algo
HINT: Please open �[93m�[1mhttp://0.0.0.0:23335�[0m in a browser for detailed api usage!!!
HINT: Please open �[93m�[1mhttp://0.0.0.0:23335�[0m in a browser for detailed api usage!!!
HINT: Please open �[93m�[1mhttp://0.0.0.0:23335�[0m in a browser for detailed api usage!!!
INFO: Started server process [96321]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:23335 (Press CTRL+C to quit)
INFO: 127.0.0.1:44438 - "GET /v1/models HTTP/1.1" 200 OK
terminate called after throwing an instance of 'std::runtime_error'what(): [TM][ERROR] CUDA runtime error: misaligned address /lmdeploy/src/turbomind/models/llama/LlamaBatch.cc:1292
Aborted (core dumped)
The text was updated successfully, but these errors were encountered:
zhulinJulia24
changed the title
[Bug] Llama-3.2-1B-Instruct does not supported kvin4, is that expected?
[Bug] Llama-3.2-1B-Instruct and InternVL2-1B does not supported kvin4, is that expected?
Nov 21, 2024
@lzhangzz anything we need to do for kv int4 inference when the head_dim is 64? @zhulinJulia24 Could you help quantizing llama-3.2-1b-instruct using lmdeploy lite auto_awq and verify its inference as well?
@lzhangzz anything we need to do for kv int4 inference when the head_dim is 64? @zhulinJulia24 Could you help quantizing llama-3.2-1b-instruct using lmdeploy lite auto_awq and verify its inference as well?
same error for Llama-3.2-1B-Instruct-4bits and InternVL2-1B-4bits when use kvint4
Checklist
Describe the bug
Llama-3.2-1B-Instruct does not supported kvin4, is that expected?
Reproduction
lmdeploy serve api_server /nvme/qa_test_models/meta-llama/Llama-3.2-1B-Instruct --session-len 8096 --server-port 23335 --tp 1 --quant-policy 4
Environment
Error traceback
The text was updated successfully, but these errors were encountered: