-
-
Notifications
You must be signed in to change notification settings - Fork 389
/
Copy pathBABYAGI.py
194 lines (156 loc) · 6.07 KB
/
BABYAGI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import json
from dotenv import load_dotenv
from pathlib import Path
from json import JSONDecodeError
from collections import deque
from typing import Dict, List, Optional, Any
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain.docstore import InMemoryDocstore
from langchain import LLMChain, PromptTemplate
from langchain.llms import BaseLLM
from FreeLLM import HuggingChatAPI # FREE HUGGINGCHAT API
from FreeLLM import ChatGPTAPI # FREE CHATGPT API
from FreeLLM import BingChatAPI # FREE BINGCHAT API
from FreeLLM import BardChatAPI # FREE GOOGLE BARD API
from langchain.vectorstores.base import VectorStore
from pydantic import BaseModel, Field
from langchain.chains.base import Chain
from langchain.experimental import BabyAGI
from BabyAgi import BabyAGIMod
import faiss
load_dotenv()
select_model = input(
"Select the model you want to use (1, 2, 3 or 4) \n \
1) ChatGPT \n \
2) HuggingChat \n \
3) BingChat (NOT GOOD RESULT)\n \
4) BardChat \n \
>>> "
)
if select_model == "1":
CG_TOKEN = os.getenv("CHATGPT_TOKEN", "your-chatgpt-token")
if CG_TOKEN != "your-chatgpt-token":
os.environ["CHATGPT_TOKEN"] = CG_TOKEN
else:
raise ValueError(
"ChatGPT Token EMPTY. Edit the .env file and put your ChatGPT token"
)
start_chat = os.getenv("USE_EXISTING_CHAT", False)
if os.getenv("USE_GPT4") == "True":
model = "gpt-4"
else:
model = "default"
llm = ChatGPTAPI.ChatGPT(token=os.environ["CHATGPT_TOKEN"], model=model)
elif select_model == "2":
emailHF = os.getenv("emailHF", "your-emailHF")
pswHF = os.getenv("pswHF", "your-pswHF")
if emailHF != "your-emailHF" or pswHF != "your-pswHF":
os.environ["emailHF"] = emailHF
os.environ["pswHF"] = pswHF
else:
raise ValueError(
"HuggingChat Token EMPTY. Edit the .env file and put your HuggingChat credentials"
)
llm = HuggingChatAPI.HuggingChat(email=os.environ["emailHF"], psw=os.environ["pswHF"])
elif select_model == "3":
if not os.path.exists("cookiesBing.json"):
raise ValueError(
"File 'cookiesBing.json' not found! Create it and put your cookies in there in the JSON format."
)
cookie_path = Path() / "cookiesBing.json"
with open("cookiesBing.json", "r") as file:
try:
file_json = json.loads(file.read())
except JSONDecodeError:
raise ValueError(
"You did not put your cookies inside 'cookiesBing.json'! You can find the simple guide to get the cookie file here: https://github.com/acheong08/EdgeGPT/tree/master#getting-authentication-required."
)
llm = BingChatAPI.BingChat(
cookiepath=str(cookie_path), conversation_style="creative"
)
elif select_model == "4":
GB_TOKEN = os.getenv("BARDCHAT_TOKEN", "your-googlebard-token")
if GB_TOKEN != "your-googlebard-token":
os.environ["BARDCHAT_TOKEN"] = GB_TOKEN
else:
raise ValueError(
"GoogleBard Token EMPTY. Edit the .env file and put your GoogleBard token"
)
cookie_path = os.environ["BARDCHAT_TOKEN"]
llm = BardChatAPI.BardChat(cookie=cookie_path)
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", "your-huggingface-token")
if HF_TOKEN != "your-huggingface-token":
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
else:
raise ValueError(
"HuggingFace Token EMPTY. Edit the .env file and put your HuggingFace token"
)
from Embedding import HuggingFaceEmbedding # EMBEDDING FUNCTION
# Define your embedding model
embeddings_model = HuggingFaceEmbedding.newEmbeddingFunction
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model, index, InMemoryDocstore({}), {})
print(vectorstore)
# DEFINE TOOL
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain import OpenAI, LLMChain
from langchain.tools import BaseTool, DuckDuckGoSearchRun
todo_prompt = PromptTemplate.from_template(
"I need to create a plan for complete me GOAl. Can you help me to create a TODO list? Create only the todo list for this objective: '{objective}'."
)
todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
search = DuckDuckGoSearchRun()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="TODO",
func=todo_chain.run,
description="useful for when you need to create a task list to complete a objective. You have to give an Input: a objective for which to create a to-do list. Output: just a list of tasks to do for that objective. It is important to give the target input 'objective' correctly!",
),
]
prefix = """Can you help me to performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}."""
suffix = """Question: {task}.
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["objective", "task", "context", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
# START
# Logging of LLMChains
verbose = False
int_max_iterations = input(
"Enter the maximum number of iterations: (Suggest from 3 and 5) "
)
max_iterations = int(int_max_iterations)
if input("Do you want to store the results? (y/n) ") == "y":
store_results = True
else:
store_results = False
# If None, will keep on going forever
max_iterations: Optional[int] = max_iterations
baby_agi = BabyAGIMod.BabyAGI.from_llm(
llm=llm,
vectorstore=vectorstore,
task_execution_chain=agent_executor,
verbose=verbose,
max_iterations=max_iterations,
store=store_results,
)
# DEFINE THE OBJECTIVE - MODIFY THIS
OBJECTIVE = input("Enter the objective of the AI system: (Be realistic!) ")
baby_agi({"objective": OBJECTIVE})