-
-
Notifications
You must be signed in to change notification settings - Fork 385
/
AUTOGPT.py
301 lines (248 loc) · 9.58 KB
/
AUTOGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# !pip install bs4
# !pip install nest_asyncio
# General
import os
import json
import pandas as pd
from dotenv import load_dotenv
from pathlib import Path
from json import JSONDecodeError
from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT
from FreeLLM import ChatGPTAPI # FREE CHATGPT API
from FreeLLM import HuggingChatAPI # FREE HUGGINGCHAT API
from FreeLLM import BingChatAPI # FREE BINGCHAT API
from FreeLLM import BardChatAPI # FREE GOOGLE BARD API
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.docstore.document import Document
import asyncio
import nest_asyncio
# Needed synce jupyter runs an async eventloop
nest_asyncio.apply()
# [Optional] Set the environment variable Tokenizers_PARALLELISM to false to get rid of the warning
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
load_dotenv()
select_model = input(
"Select the model you want to use (1, 2, 3 or 4) \n \
1) ChatGPT \n \
2) HuggingChat \n \
3) BingChat \n \
4) Google Bard \n \
>>> "
)
if select_model == "1":
CG_TOKEN = os.getenv("CHATGPT_TOKEN", "your-chatgpt-token")
if CG_TOKEN != "your-chatgpt-token":
os.environ["CHATGPT_TOKEN"] = CG_TOKEN
else:
raise ValueError(
"ChatGPT Token EMPTY. Edit the .env file and put your ChatGPT token"
)
start_chat = os.getenv("USE_EXISTING_CHAT", False)
if os.getenv("USE_GPT4") == "True":
model = "gpt-4"
else:
model = "default"
llm = ChatGPTAPI.ChatGPT(token=os.environ["CHATGPT_TOKEN"], model=model)
elif select_model == "2":
emailHF = os.getenv("emailHF", "your-emailHF")
pswHF = os.getenv("pswHF", "your-pswHF")
if emailHF != "your-emailHF" or pswHF != "your-pswHF":
os.environ["emailHF"] = emailHF
os.environ["pswHF"] = pswHF
else:
raise ValueError(
"HuggingChat Token EMPTY. Edit the .env file and put your HuggingChat credentials"
)
llm = HuggingChatAPI.HuggingChat(email=os.environ["emailHF"], psw=os.environ["pswHF"])
elif select_model == "3":
if not os.path.exists("cookiesBing.json"):
raise ValueError(
"File 'cookiesBing.json' not found! Create it and put your cookies in there in the JSON format."
)
cookie_path = Path() / "cookiesBing.json"
with open("cookiesBing.json", "r") as file:
try:
file_json = json.loads(file.read())
except JSONDecodeError:
raise ValueError(
"You did not put your cookies inside 'cookiesBing.json'! You can find the simple guide to get the cookie file here: https://github.com/acheong08/EdgeGPT/tree/master#getting-authentication-required."
)
llm = BingChatAPI.BingChat(
cookiepath=str(cookie_path), conversation_style="creative"
)
elif select_model == "4":
GB_TOKEN = os.getenv("BARDCHAT_TOKEN", "your-googlebard-token")
if GB_TOKEN != "your-googlebard-token":
os.environ["BARDCHAT_TOKEN"] = GB_TOKEN
else:
raise ValueError(
"GoogleBard Token EMPTY. Edit the .env file and put your GoogleBard token"
)
cookie_path = os.environ["BARDCHAT_TOKEN"]
llm = BardChatAPI.BardChat(cookie=cookie_path)
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", "your-huggingface-token")
if HF_TOKEN != "your-huggingface-token":
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
else:
raise ValueError(
"HuggingFace Token EMPTY. Edit the .env file and put your HuggingFace token"
)
# Tools
import os
from contextlib import contextmanager
from typing import Optional
from langchain.agents import tool
from langchain.tools.file_management.read import ReadFileTool
from langchain.tools.file_management.write import WriteFileTool
from tempfile import TemporaryDirectory
ROOT_DIR = TemporaryDirectory()
@contextmanager
def pushd(new_dir):
"""Context manager for changing the current working directory."""
prev_dir = os.getcwd()
os.chdir(new_dir)
try:
yield
finally:
os.chdir(prev_dir)
@tool
def process_csv(
csv_file_path: str, instructions: str, output_path: Optional[str] = None
) -> str:
"""Process a CSV by with pandas in a limited REPL.\
Only use this after writing data to disk as a csv file.\
Any figures must be saved to disk to be viewed by the human.\
Instructions should be written in natural language, not code. Assume the dataframe is already loaded."""
with pushd(ROOT_DIR):
try:
df = pd.read_csv(csv_file_path)
except Exception as e:
return f"Error: {e}"
agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True)
if output_path is not None:
instructions += f" Save output to disk at {output_path}"
try:
result = agent.run(instructions)
return result
except Exception as e:
return f"Error: {e}"
# !pip install playwright
# !playwright install
async def async_load_playwright(url: str) -> str:
"""Load the specified URLs using Playwright and parse using BeautifulSoup."""
from bs4 import BeautifulSoup
from playwright.async_api import async_playwright
try:
print(">>> WARNING <<<")
print(
"If you are running this for the first time, you nedd to install playwright"
)
print(">>> AUTO INSTALLING PLAYWRIGHT <<<")
os.system("playwright install")
print(">>> PLAYWRIGHT INSTALLED <<<")
except:
print(">>> PLAYWRIGHT ALREADY INSTALLED <<<")
pass
results = ""
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
try:
page = await browser.new_page()
await page.goto(url)
page_source = await page.content()
soup = BeautifulSoup(page_source, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
results = "\n".join(chunk for chunk in chunks if chunk)
except Exception as e:
results = f"Error: {e}"
await browser.close()
return results
def run_async(coro):
event_loop = asyncio.get_event_loop()
return event_loop.run_until_complete(coro)
@tool
def browse_web_page(url: str) -> str:
"""Verbose way to scrape a whole webpage. Likely to cause issues parsing."""
return run_async(async_load_playwright(url))
from langchain.tools import BaseTool, DuckDuckGoSearchRun
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pydantic import Field
from langchain.chains.qa_with_sources.loading import (
load_qa_with_sources_chain,
BaseCombineDocumentsChain,
)
def _get_text_splitter():
return RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size=500,
chunk_overlap=20,
length_function=len,
)
class WebpageQATool(BaseTool):
name = "query_webpage"
description = (
"Browse a webpage and retrieve the information relevant to the question."
)
text_splitter: RecursiveCharacterTextSplitter = Field(
default_factory=_get_text_splitter
)
qa_chain: BaseCombineDocumentsChain
def _run(self, url: str, question: str) -> str:
"""Useful for browsing websites and scraping the text information."""
result = browse_web_page.run(url)
docs = [Document(page_content=result, metadata={"source": url})]
web_docs = self.text_splitter.split_documents(docs)
results = []
# TODO: Handle this with a MapReduceChain
for i in range(0, len(web_docs), 4):
input_docs = web_docs[i : i + 4]
window_result = self.qa_chain(
{"input_documents": input_docs, "question": question},
return_only_outputs=True,
)
results.append(f"Response from window {i} - {window_result}")
results_docs = [
Document(page_content="\n".join(results), metadata={"source": url})
]
return self.qa_chain(
{"input_documents": results_docs, "question": question},
return_only_outputs=True,
)
async def _arun(self, url: str, question: str) -> str:
raise NotImplementedError
query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm))
# Memory
import faiss
from langchain.vectorstores import FAISS
from langchain.docstore import InMemoryDocstore
from Embedding import HuggingFaceEmbedding # EMBEDDING FUNCTION
from langchain.tools.human.tool import HumanInputRun
# Define your embedding model
embeddings_model = HuggingFaceEmbedding.newEmbeddingFunction
embedding_size = 1536 # if you change this you need to change also in Embedding/HuggingFaceEmbedding.py
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model, index, InMemoryDocstore({}), {})
# !pip install duckduckgo_search
web_search = DuckDuckGoSearchRun()
tools = [
web_search,
WriteFileTool(),
ReadFileTool(),
process_csv,
query_website_tool,
# HumanInputRun(), # Activate if you want the permit asking for help from the human
]
agent = AutoGPT.from_llm_and_tools(
ai_name="BingChat",
ai_role="Assistant",
tools=tools,
llm=llm,
memory=vectorstore.as_retriever(search_kwargs={"k": 5}),
# human_in_the_loop=True, # Set to True if you want to add feedback at each step.
)
# agent.chain.verbose = True
agent.run([input("Enter the objective of the AI system: (Be realistic!) ")])