-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsetup.py
298 lines (263 loc) · 13.5 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
Setup an environment with relevant objects and config for training or testing for semantic segmentation.
@author: Joshua Chough
"""
#--------------------------------------------------
# Imports
#--------------------------------------------------
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data.dataloader import DataLoader
import wandb
import sys
import os
import datetime
import numpy as np
from utils import *
from models import *
from data import *
#--------------------------------------------------
# Setup function
#--------------------------------------------------
def setup(phase, args):
# Initialize seed
seed = args.seed
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#--------------------------------------------------
# Initialize configuration parameters
#--------------------------------------------------
now = datetime.datetime.now() # current date and time
date_time = now.strftime('%y%m%d-%H%M%S')
date = now.strftime('%y%m%d')
try:
os.mkdir(args.model_dir)
except OSError:
pass
if phase == 'train':
# Training parameters
config = dict(
# Processing
seed = args.seed,
num_workers = args.num_workers,
gpu = args.gpu if torch.cuda.is_available() else False,
# Model
model_path = None,
conversion = None,
model_type = args.model_type,
architecture = args.arch,
kernel_size = args.kernel_size,
pretrained = args.pretrained,
bn = args.bn,
full_prop = (args.full_prop if args.model_type == 'snn' else None),
# Dataset
dataset = dataset_cfg[args.dataset],
batch_size = args.batch_size,
batch_size_test = args.batch_size*2,
img_size = (img_sizes[args.dataset] if args.img_size == -1 else (args.img_size, args.img_size)),
augment = args.augment,
thl = (args.thl if args.model_type == 'snn' else None),
attack = None,
atk_factor = None,
# Learning
epochs = args.epochs,
lr = args.lr,
optimizer = args.optimizer,
# LIF neuron
timesteps = (args.timesteps if args.model_type == 'snn' else None),
leak_mem = (args.leak_mem if args.model_type == 'snn' else None),
def_threshold = (args.def_threshold if args.model_type == 'snn' else None),
threshold_type = None,
leaky = (args.leaky if args.model_type == 'ann' else None),
alpha = (args.alpha if (args.model_type == 'ann' and args.leaky) else None),
ibt = None,
scaling_factor = None,
# Visualization
plot_batch = args.plot_batch,
count_spikes = None,
)
elif phase == 'test':
# Testing parameters
model_path = args.model_path
conversion = True if (args.conversion or ('conversion' in model_path)) else False
# Use configuration parameters from pretrained model
state = torch.load(model_path, map_location='cpu')
old_config = state['config']
if conversion and old_config['model_type'] == 'snn':
raise RuntimeError('You can only do conversion using a pretrained ANN model. Please use --model_path with an ANN path')
model_type = ('snn' if conversion else old_config['model_type'])
config = dict(
# Processing
seed = args.seed,
num_workers = args.num_workers,
gpu = args.gpu if torch.cuda.is_available() else False,
# Model
model_path = model_path,
conversion = conversion,
model_type = model_type,
architecture = old_config['architecture'],
kernel_size = old_config['kernel_size'],
pretrained = (None if conversion else old_config['pretrained']),
bn = old_config['bn'],
full_prop = old_config['full_prop'],
# Dataset
dataset = old_config['dataset'],
batch_size = (args.batch_size if conversion else None),
batch_size_test = args.batch_size,
img_size = old_config['img_size'],
augment = None,
thl = old_config['thl'],
attack = (args.attack if args.attack else False),
atk_factor = (args.atk_factor if (args.atk_factor or args.atk_factor == 0) else False),
# Learning
epochs = None,
lr = None,
optimizer = None,
# LIF neuron
timesteps = (args.timesteps if conversion else old_config['timesteps']),
leak_mem = (args.leak_mem if conversion else old_config['leak_mem']),
def_threshold = (args.def_threshold if conversion else old_config['def_threshold']),
threshold_type = (args.threshold_type if conversion else None),
leaky = (None if conversion else old_config['leaky']),
alpha = old_config['alpha'],
ibt = (True if (conversion and old_config['leaky']) else False if model_type == 'snn' else None),
scaling_factor = (args.scaling_factor if conversion else None),
# Visualization
plot_batch = args.plot_batch,
count_spikes = args.count_spikes,
)
#--------------------------------------------------
# Initialize wandb settings
#--------------------------------------------------
# Generate tags
tags = []
if (args.debug):
tags += ['development']
else:
tags += ['production']
if phase == 'test':
if config['conversion']:
tags += ['conversion']
if config['count_spikes']:
tags += ['count spikes']
if config['attack']:
tags += ['attack']
# Start a run, tracking hyperparameters
run = wandb.init(
project=args.project,
group=date,
job_type=phase,
reinit=True,
tags=tags,
force=True,
config=config,
mode=args.wandb_mode
)
# Generate model identifier
identifier = createIdentifier((date, run.name, wandb.config.model_type, wandb.config.architecture, wandb.config.dataset['name'], args.file_name))
wandb.config.update({'identifier': identifier})
config = wandb.config
# Use a wrapper for printing
f = File(False)
# Display run information
if (args.debug):
f.write('------------ D E V E L O P M E N T M O D E -------------', start='\n', end='\n\n')
f.write('Run on time: {}'.format(now))
f.write('Identifier: {}'.format(config.identifier))
if phase == 'test':
f.write('Pretrained {}: {}'.format(config.model_type.upper(), args.model_path))
if config.conversion:
f.write('==== Converting ANN -> SNN [{}-wise thresholding] ===='.format(config.threshold_type), terminal=True)
# Display parameters
if args.info:
f.write('=== [{}] CONFIGURATION ==='.format(run.name), start='\n')
for key in config.keys():
if key == 'dataset':
f.write('\t {:20} : {}'.format(key, getattr(config, key)['name']))
else:
value = getattr(config, key)
if value != None:
f.write('\t {:20} : {}'.format(key, value))
#--------------------------------------------------
# Load dataset
#--------------------------------------------------
# Create dataloaders from custom datasets for training and/or testing
if config.dataset['name'] == 'voc2012':
if phase == 'train' or conversion:
train_dataset = VOC2012(config.dataset['path'], split="train_aug", is_transform=True, img_size=config.img_size)
trainloader = DataLoader(train_dataset, batch_size=config.batch_size, num_workers=config.num_workers, shuffle=True)
test_dataset = VOC2012(config.dataset['path'], split="val", is_transform=True, img_size=config.img_size, attack=config.attack, atk_factor=config.atk_factor)
testloader = DataLoader(test_dataset, batch_size=config.batch_size_test, num_workers=config.num_workers, shuffle=False)
elif config.dataset['name'] == 'ddd17':
if phase == 'train' or conversion:
train_dataset = DDD17(config.dataset['path'], split="train", is_transform=True, is_augment=config.augment, img_size=config.img_size, mod=True, thl=config.thl, thl_size=config.timesteps)
trainloader = DataLoader(train_dataset, batch_size=config.batch_size, num_workers=config.num_workers, shuffle=True)
test_dataset = DDD17(config.dataset['path'], split="test", is_transform=True, is_augment=False, attack=config.attack, img_size=config.img_size, mod=True, thl=config.thl, thl_size=config.timesteps, atk_factor=config.atk_factor)
testloader = DataLoader(test_dataset, batch_size=config.batch_size_test, num_workers=config.num_workers, shuffle=False)
else:
raise RuntimeError("dataset not valid..")
# Display dataset stats
if phase == 'train' or config.conversion:
f.write('loaded {} train split [{} samples]'.format(config.dataset['name'], (len(trainloader)*config.batch_size)))
f.write('loaded {} test split [{} samples]'.format(config.dataset['name'], (len(testloader)*config.batch_size_test)))
#--------------------------------------------------
# Instantiate the model and optimizer
#--------------------------------------------------
if config.model_type == 'snn':
model = SNN_VGG(config=config)
elif config.model_type == 'ann':
model = ANN_VGG(config=config)
else:
raise RuntimeError("architecture not valid..")
if config.gpu:
model = model.cuda()
if args.see_model:
f.write(model)
if phase == 'test':
# Load weights from pretrained model
state = torch.load(args.model_path, map_location='cpu')
model.load_state_dict(state['state_dict'], strict=False)
# If using ANN/SNN conversion, load or find the maximum activation thresholds (threshold normalization)
if config.conversion:
if (not args.reset_thresholds) and ('thresholds' in state.keys()) and (config.threshold_type in state['thresholds'].keys()) and (str(config.timesteps) in state['thresholds'][config.threshold_type].keys()):
# If thresholds present in loaded ANN file, load thresholds
thresholds = state['thresholds'][config.threshold_type][str(config.timesteps)]
f.write('Loaded {} thresholds ({}) from {}'.format(config.threshold_type, config.timesteps, args.model_path))
model.threshold_update(scaling_factor=config.scaling_factor, thresholds=thresholds[:], threshold_type=config.threshold_type)
else:
# If thresholds not present in loaded ANN file, find thresholds
thresholds = find_thresholds(f, trainloader, model, config)
model.threshold_update(scaling_factor=config.scaling_factor, thresholds=thresholds[:], threshold_type=config.threshold_type)
# Save the thresholds in the ANN file
if ('thresholds' not in state.keys()) or (not isinstance(state['thresholds'], dict)):
state['thresholds'] = {}
if (config.threshold_type not in state['thresholds'].keys()) or (not isinstance(state['thresholds'][config.threshold_type], dict)):
state['thresholds'][config.threshold_type] = {}
state['thresholds'][config.threshold_type][str(config.timesteps)] = thresholds
torch.save(state, args.model_path)
f.write('Saved {} thresholds ({}) in {}'.format(config.threshold_type, config.timesteps, args.model_path))
# For training, configure the loss function, optimizer, and learning rate scheduler
if phase == 'train':
criterion = nn.CrossEntropyLoss()
if config.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=config.lr, amsgrad=True, weight_decay=5e-4)
elif config.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=config.lr, momentum=0.9, weight_decay=5e-4)
else:
raise RuntimeError("optimizer not valid..")
milestones = [int(milestone*config.epochs) for milestone in [0.5, 0.8]]
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
#--------------------------------------------------
# Prepare state objects
#--------------------------------------------------
# Prepare state to be saved with trained model
if phase == 'train':
state = {
'config': config.as_dict()
}
if phase == 'train':
return run, f, config, trainloader, testloader, model, criterion, optimizer, scheduler, now, state
elif phase == 'test':
return run, f, config, testloader, model, now