diff --git a/narps_open/pipelines/__init__.py b/narps_open/pipelines/__init__.py index 348337a2..dc1b254f 100644 --- a/narps_open/pipelines/__init__.py +++ b/narps_open/pipelines/__init__.py @@ -58,7 +58,7 @@ 'L7J7': 'PipelineTeamL7J7', 'L9G5': None, 'O03M': None, - 'O21U': None, + 'O21U': 'PipelineTeamO21U', 'O6R6': 'PipelineTeamO6R6', 'P5F3': None, 'Q58J': None, diff --git a/narps_open/pipelines/team_O21U.py b/narps_open/pipelines/team_O21U.py new file mode 100644 index 00000000..6fa70c53 --- /dev/null +++ b/narps_open/pipelines/team_O21U.py @@ -0,0 +1,742 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Write the work of NARPS team O21U using Nipype """ + +from os.path import join +from itertools import product + +from nipype import Workflow, Node, MapNode +from nipype.interfaces.utility import IdentityInterface, Function, Split +from nipype.interfaces.io import SelectFiles, DataSink +from nipype.interfaces.fsl import ( + IsotropicSmooth, Level1Design, FEATModel, + L2Model, Merge, FLAMEO, FILMGLS, MultipleRegressDesign, + FSLCommand, Cluster + ) +from nipype.algorithms.modelgen import SpecifyModel +from nipype.interfaces.fsl.maths import MultiImageMaths + +from narps_open.utils.configuration import Configuration +from narps_open.pipelines import Pipeline +from narps_open.data.task import TaskInformation +from narps_open.data.participants import get_group +from narps_open.core.common import list_intersection, elements_in_string, clean_list +from narps_open.core.interfaces import InterfaceFactory + +# Setup FSL +FSLCommand.set_default_output_type('NIFTI_GZ') + +class PipelineTeamO21U(Pipeline): + """ A class that defines the pipeline of team O21U """ + + def __init__(self): + super().__init__() + self.fwhm = 5.0 + self.team_id = 'O21U' + self.contrast_list = ['1', '2'] + self.run_level_contrasts = [ + ('effect_of_gain', 'T', ['gain', 'loss'], [1, 0]), + ('effect_of_loss', 'T', ['gain', 'loss'], [0, 1]) + ] + + def get_preprocessing(self): + """ No preprocessing has been done by team O21U """ + return None + + def get_subject_information(event_file): + """ + Create Bunchs for specifyModel. + + Parameters : + - event_file : str, file corresponding to the run and the subject to analyze + + Returns : + - subject_info : list of Bunch for 1st level analysis. + """ + from numpy import mean + from nipype.interfaces.base import Bunch + + onsets = [] + durations = [] + amplitudes_trial = [] + amplitudes_gain = [] + amplitudes_loss = [] + + with open(event_file, 'rt') as file: + next(file) # skip the header + + for line in file: + info = line.strip().split() + onsets.append(float(info[0])) + durations.append(float(info[1])) + amplitudes_trial.append(1.0) + amplitudes_gain.append(float(info[2])) + amplitudes_loss.append(float(info[3])) + + return [ + Bunch( + conditions = ['trial', 'gain', 'loss'], + onsets = [onsets] * 3, + durations = [durations] * 3, + amplitudes = [amplitudes_trial, amplitudes_gain, amplitudes_loss] + ) + ] + + def get_confounds_file(filepath, subject_id, run_id): + """ + Create a tsv file with only desired confounds per subject per run. + + Parameters : + - filepath : path to the subject confounds file (i.e. one per run) + - subject_id : subject for whom the 1st level analysis is made + - run_id: run for which the 1st level analysis is made + + Return : + - confounds_file : paths to new files containing only desired confounds. + """ + from os.path import abspath + + from pandas import read_csv, DataFrame + from numpy import array, transpose + + data_frame = read_csv(filepath, sep = '\t', header=0) + retained_confounds = DataFrame(transpose(array([ + data_frame['FramewiseDisplacement'], data_frame['X'], data_frame['Y'], data_frame['Z'], + data_frame['RotX'], data_frame['RotY'], data_frame['RotZ'] + ]))) + + # Write confounds to a file + confounds_file = abspath(f'confounds_file_sub-{subject_id}_run-{run_id}.tsv') + with open(confounds_file, 'w', encoding = 'utf-8') as writer: + writer.write(retained_confounds.to_csv( + sep = '\t', index = False, header = False, na_rep = '0.0')) + + return confounds_file + + def get_run_level_analysis(self): + """ + Create the run level analysis workflow. + + Returns: + - run_level : nipype.WorkFlow + """ + # Create run level analysis workflow and connect its nodes + run_level = Workflow( + base_dir = self.directories.working_dir, + name = 'run_level_analysis' + ) + + # IdentityInterface Node - Iterate on subject and runs + information_source = Node(IdentityInterface( + fields = ['subject_id', 'run_id']), + name = 'information_source') + information_source.iterables = [ + ('subject_id', self.subject_list), + ('run_id', self.run_list) + ] + + # SelectFiles - Get necessary files + templates = { + 'func' : join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-{run_id}_bold_space-MNI152NLin2009cAsym_preproc.nii.gz'), + 'mask' : join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-{run_id}_bold_space-MNI152NLin2009cAsym_brainmask.nii.gz'), + 'events' : join('sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-{run_id}_events.tsv') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory = self.directories.dataset_dir + run_level.connect(information_source, 'subject_id', select_files, 'subject_id') + run_level.connect(information_source, 'run_id', select_files, 'run_id') + + # MultiImageMaths Node - Apply mask to func + mask_func = Node(MultiImageMaths(), name = 'mask_func') + mask_func.inputs.op_string = '-mul %s ' + run_level.connect(select_files, 'func', mask_func, 'in_file') + run_level.connect(select_files, 'mask', mask_func, 'operand_files') + + # IsotropicSmooth Node - Smoothing data + smoothing_func = Node(IsotropicSmooth(), name = 'smoothing_func') + smoothing_func.inputs.fwhm = self.fwhm + run_level.connect(mask_func, 'out_file', smoothing_func, 'in_file') + + # Get Subject Info - get subject specific condition information + subject_information = Node(Function( + function = self.get_subject_information, + input_names = ['event_file'], + output_names = ['subject_info'] + ), name = 'subject_information') + run_level.connect(select_files, 'events', subject_information, 'event_file') + + # SpecifyModel Node - Generate run level model + specify_model = Node(SpecifyModel(), name = 'specify_model') + specify_model.inputs.high_pass_filter_cutoff = 100 + specify_model.inputs.input_units = 'secs' + specify_model.inputs.time_repetition = TaskInformation()['RepetitionTime'] + run_level.connect(smoothing_func, 'out_file', specify_model, 'functional_runs') + run_level.connect(subject_information, 'subject_info', specify_model, 'subject_info') + + # Level1Design Node - Generate files for run level computation + model_design = Node(Level1Design(), name = 'model_design') + model_design.inputs.bases = {'dgamma' : {'derivs' : True }} + model_design.inputs.interscan_interval = TaskInformation()['RepetitionTime'] + model_design.inputs.model_serial_correlations = True + model_design.inputs.contrasts = self.run_level_contrasts + run_level.connect(specify_model, 'session_info', model_design, 'session_info') + + # FEATModel Node - Generate run level model + model_generation = Node(FEATModel(), name = 'model_generation') + run_level.connect(model_design, 'ev_files', model_generation, 'ev_files') + run_level.connect(model_design, 'fsf_files', model_generation, 'fsf_file') + + # FILMGLS Node - Estimate first level model + model_estimate = Node(FILMGLS(), name='model_estimate') + run_level.connect(smoothing_func, 'out_file', model_estimate, 'in_file') + run_level.connect(model_generation, 'con_file', model_estimate, 'tcon_file') + run_level.connect(model_generation, 'design_file', model_estimate, 'design_file') + + # DataSink Node - store the wanted results in the wanted directory + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + run_level.connect(model_estimate, 'results_dir', data_sink, 'run_level_analysis.@results') + run_level.connect( + model_generation, 'design_file', data_sink, 'run_level_analysis.@design_file') + run_level.connect( + model_generation, 'design_image', data_sink, 'run_level_analysis.@design_img') + + # Remove large files, if requested + if Configuration()['pipelines']['remove_unused_data']: + remove_masked = Node( + InterfaceFactory.create('remove_parent_directory'), + name = 'remove_masked') + run_level.connect(smoothing_func, 'out_file', remove_masked, '_') + run_level.connect(mask_func, 'out_file', remove_masked, 'file_name') + + remove_smooth = Node( + InterfaceFactory.create('remove_parent_directory'), + name = 'remove_smooth') + run_level.connect(data_sink, 'out_file', remove_smooth, '_') + run_level.connect(smoothing_func, 'out_file', remove_smooth, 'file_name') + + return run_level + + def get_run_level_outputs(self): + """ Return the names of the files the run level analysis is supposed to generate. """ + + parameters = { + 'run_id' : self.run_list, + 'subject_id' : self.subject_list, + 'contrast_id' : self.contrast_list, + } + parameter_sets = product(*parameters.values()) + output_dir = join(self.directories.output_dir, + 'run_level_analysis', '_run_id_{run_id}_subject_id_{subject_id}') + templates = [ + join(output_dir, 'results', 'cope{contrast_id}.nii.gz'), + join(output_dir, 'results', 'tstat{contrast_id}.nii.gz'), + join(output_dir, 'results', 'varcope{contrast_id}.nii.gz'), + join(output_dir, 'results', 'zstat{contrast_id}.nii.gz') + ] + return [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets for template in templates] + + def get_subject_level_analysis(self): + """ + Create the subject level analysis workflow. + + Returns: + - subject_level_analysis : nipype.WorkFlow + """ + # Second level (single-subject, mean of all four scans) analysis workflow. + subject_level = Workflow( + base_dir = self.directories.working_dir, + name = 'subject_level_analysis') + + # Infosource Node - To iterate on subject and runs + information_source = Node(IdentityInterface( + fields = ['subject_id', 'contrast_id']), + name = 'information_source') + information_source.iterables = [ + ('subject_id', self.subject_list), + ('contrast_id', self.contrast_list) + ] + + # SelectFiles node - to select necessary files + templates = { + 'cope' : join(self.directories.output_dir, + 'run_level_analysis', '_run_id_*_subject_id_{subject_id}', 'results', + 'cope{contrast_id}.nii.gz'), + 'varcope' : join(self.directories.output_dir, + 'run_level_analysis', '_run_id_*_subject_id_{subject_id}', 'results', + 'varcope{contrast_id}.nii.gz'), + 'masks' : join('derivatives', 'fmriprep', 'sub-{subject_id}', 'func', + 'sub-{subject_id}_task-MGT_run-*_bold_space-MNI152NLin2009cAsym_brainmask.nii.gz') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory= self.directories.dataset_dir + subject_level.connect(information_source, 'subject_id', select_files, 'subject_id') + subject_level.connect(information_source, 'contrast_id', select_files, 'contrast_id') + + # Merge Node - Merge copes files for each subject + merge_copes = Node(Merge(), name = 'merge_copes') + merge_copes.inputs.dimension = 't' + subject_level.connect(select_files, 'cope', merge_copes, 'in_files') + + # Merge Node - Merge varcopes files for each subject + merge_varcopes = Node(Merge(), name = 'merge_varcopes') + merge_varcopes.inputs.dimension = 't' + subject_level.connect(select_files, 'varcope', merge_varcopes, 'in_files') + + # Split Node - Split mask list to serve them as inputs of the MultiImageMaths node. + split_masks = Node(Split(), name = 'split_masks') + split_masks.inputs.splits = [1, len(self.run_list) - 1] + split_masks.inputs.squeeze = True # Unfold one-element splits removing the list + subject_level.connect(select_files, 'masks', split_masks, 'inlist') + + # MultiImageMaths Node - Create a subject mask by + # computing the intersection of all run masks. + mask_intersection = Node(MultiImageMaths(), name = 'mask_intersection') + mask_intersection.inputs.op_string = '-mul %s ' * (len(self.run_list) - 1) + subject_level.connect(split_masks, 'out1', mask_intersection, 'in_file') + subject_level.connect(split_masks, 'out2', mask_intersection, 'operand_files') + + # L2Model Node - Generate subject specific second level model + generate_model = Node(L2Model(), name = 'generate_model') + generate_model.inputs.num_copes = len(self.run_list) + + # FLAMEO Node - Estimate model + estimate_model = Node(FLAMEO(), name = 'estimate_model') + estimate_model.inputs.run_mode = 'flame1' + subject_level.connect(mask_intersection, 'out_file', estimate_model, 'mask_file') + subject_level.connect(merge_copes, 'merged_file', estimate_model, 'cope_file') + subject_level.connect(merge_varcopes, 'merged_file', estimate_model, 'var_cope_file') + subject_level.connect(generate_model, 'design_mat', estimate_model, 'design_file') + subject_level.connect(generate_model, 'design_con', estimate_model, 't_con_file') + subject_level.connect(generate_model, 'design_grp', estimate_model, 'cov_split_file') + + # DataSink Node - store the wanted results in the wanted directory + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + subject_level.connect( + mask_intersection, 'out_file', data_sink, 'subject_level_analysis.@mask') + subject_level.connect(estimate_model, 'zstats', data_sink, 'subject_level_analysis.@stats') + subject_level.connect( + estimate_model, 'tstats', data_sink, 'subject_level_analysis.@tstats') + subject_level.connect(estimate_model, 'copes', data_sink, 'subject_level_analysis.@copes') + subject_level.connect( + estimate_model, 'var_copes', data_sink, 'subject_level_analysis.@varcopes') + + return subject_level + + def get_subject_level_outputs(self): + """ Return the names of the files the subject level analysis is supposed to generate. """ + + parameters = { + 'contrast_id' : self.contrast_list, + 'subject_id' : self.subject_list, + 'file' : ['cope1.nii.gz', 'tstat1.nii.gz', 'varcope1.nii.gz', 'zstat1.nii.gz'] + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'subject_level_analysis', '_contrast_id_{contrast_id}_subject_id_{subject_id}','{file}' + ) + return_list = [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + parameters = { + 'contrast_id' : self.contrast_list, + 'subject_id' : self.subject_list, + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'subject_level_analysis', '_contrast_id_{contrast_id}_subject_id_{subject_id}', + 'sub-{subject_id}_task-MGT_run-01_bold_space-MNI152NLin2009cAsym_brainmask_maths.nii.gz' + ) + return_list += [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + return return_list + + def get_one_sample_t_test_regressors(subject_list: list) -> dict: + """ + Create dictionary of regressors for one sample t-test group analysis. + + Parameters: + - subject_list: ids of subject in the group for which to do the analysis + + Returns: + - dict containing named lists of regressors. + """ + + return dict(group_mean = [1 for _ in subject_list]) + + def get_two_sample_t_test_regressors( + equal_range_ids: list, + equal_indifference_ids: list, + subject_list: list, + ) -> dict: + """ + Create dictionary of regressors for two sample t-test group analysis. + + Parameters: + - equal_range_ids: ids of subjects in equal range group + - equal_indifference_ids: ids of subjects in equal indifference group + - subject_list: ids of subject for which to do the analysis + + Returns: + - regressors, dict: containing named lists of regressors. + - groups, list: group identifiers to distinguish groups in FSL analysis. + """ + + # Create 2 lists containing n_sub values which are + # * 1 if the participant is on the group + # * 0 otherwise + equal_range_regressors = [1 if i in equal_range_ids else 0 for i in subject_list] + equal_indifference_regressors = [ + 1 if i in equal_indifference_ids else 0 for i in subject_list + ] + + # Create regressors output : a dict with the two list + regressors = dict( + equalRange = equal_range_regressors, + equalIndifference = equal_indifference_regressors + ) + + # Create groups outputs : a list with 1 for equalRange subjects and 2 for equalIndifference + groups = [1 if i == 1 else 2 for i in equal_range_regressors] + + return regressors, groups + + def get_group_level_analysis(self): + """ + Return all workflows for the group level analysis. + + Returns; + - a list of nipype.WorkFlow + """ + + methods = ['equalRange', 'equalIndifference', 'groupComp'] + return [self.get_group_level_analysis_sub_workflow(method) for method in methods] + + def get_group_level_analysis_sub_workflow(self, method): + """ + Return a workflow for the group level analysis. + + Parameters: + - method: one of 'equalRange', 'equalIndifference' or 'groupComp' + + Returns: + - group_level: nipype.WorkFlow + """ + # Compute the number of participants used to do the analysis + nb_subjects = len(self.subject_list) + + # Declare the workflow + group_level = Workflow( + base_dir = self.directories.working_dir, + name = f'group_level_analysis_{method}_nsub_{nb_subjects}') + + # Infosource Node - iterate over the contrasts generated by the subject level analysis + information_source = Node(IdentityInterface( + fields = ['contrast_id']), + name = 'information_source') + information_source.iterables = [('contrast_id', self.contrast_list)] + + # SelectFiles Node - select necessary files + templates = { + 'cope' : join(self.directories.output_dir, + 'subject_level_analysis', '_contrast_id_{contrast_id}_subject_id_*', + 'cope1.nii.gz'), + 'varcope' : join(self.directories.output_dir, + 'subject_level_analysis', '_contrast_id_{contrast_id}_subject_id_*', + 'varcope1.nii.gz'), + 'masks': join(self.directories.output_dir, + 'subject_level_analysis', '_contrast_id_1_subject_id_*', + 'sub-*_task-MGT_run-*_bold_space-MNI152NLin2009cAsym_brainmask_maths.nii.gz') + } + select_files = Node(SelectFiles(templates), name = 'select_files') + select_files.inputs.base_directory = self.directories.results_dir + group_level.connect(information_source, 'contrast_id', select_files, 'contrast_id') + + # Function Node elements_in_string + # Get contrast of parameter estimates (cope) for these subjects + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_copes = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_copes', iterfield = 'input_str' + ) + group_level.connect(select_files, 'cope', get_copes, 'input_str') + + # Function Node elements_in_string + # Get variance of the estimated copes (varcope) for these subjects + # Note : using a MapNode with elements_in_string requires using clean_list to remove + # None values from the out_list + get_varcopes = MapNode(Function( + function = elements_in_string, + input_names = ['input_str', 'elements'], + output_names = ['out_list'] + ), + name = 'get_varcopes', iterfield = 'input_str' + ) + group_level.connect(select_files, 'varcope', get_varcopes, 'input_str') + + # Merge Node - Merge cope files + merge_copes = Node(Merge(), name = 'merge_copes') + merge_copes.inputs.dimension = 't' + group_level.connect(get_copes, ('out_list', clean_list), merge_copes, 'in_files') + + # Merge Node - Merge cope files + merge_varcopes = Node(Merge(), name = 'merge_varcopes') + merge_varcopes.inputs.dimension = 't' + group_level.connect(get_varcopes, ('out_list', clean_list), merge_varcopes, 'in_files') + + # Split Node - Split mask list to serve them as inputs of the MultiImageMaths node. + split_masks = Node(Split(), name = 'split_masks') + split_masks.inputs.splits = [1, len(self.subject_list) - 1] + split_masks.inputs.squeeze = True # Unfold one-element splits removing the list + group_level.connect(select_files, 'masks', split_masks, 'inlist') + + # MultiImageMaths Node - Create a subject mask by + # computing the intersection of all run masks. + mask_intersection = Node(MultiImageMaths(), name = 'mask_intersection') + mask_intersection.inputs.op_string = '-mul %s ' * (len(self.subject_list) - 1) + group_level.connect(split_masks, 'out1', mask_intersection, 'in_file') + group_level.connect(split_masks, 'out2', mask_intersection, 'operand_files') + + # MultipleRegressDesign Node - Specify model + specify_model = Node(MultipleRegressDesign(), name = 'specify_model') + + # FLAMEO Node - Estimate model + estimate_model = Node(FLAMEO(), name = 'estimate_model') + estimate_model.inputs.run_mode = 'flame1' + group_level.connect(mask_intersection, 'out_file', estimate_model, 'mask_file') + group_level.connect(merge_copes, 'merged_file', estimate_model, 'cope_file') + group_level.connect(merge_varcopes, 'merged_file', estimate_model, 'var_cope_file') + group_level.connect(specify_model, 'design_mat', estimate_model, 'design_file') + group_level.connect(specify_model, 'design_con', estimate_model, 't_con_file') + group_level.connect(specify_model, 'design_grp', estimate_model, 'cov_split_file') + + # Cluster Node - Perform clustering on statistical output + cluster = MapNode( + Cluster(), + name = 'cluster', + iterfield = ['in_file', 'cope_file'], + synchronize = True + ) + cluster.inputs.threshold = 2.3 + cluster.inputs.out_threshold_file = True + group_level.connect(estimate_model, 'zstats', cluster, 'in_file') + group_level.connect(estimate_model, 'copes', cluster, 'cope_file') + + # Datasink Node - Save important files + data_sink = Node(DataSink(), name = 'data_sink') + data_sink.inputs.base_directory = self.directories.output_dir + group_level.connect(estimate_model, 'zstats', data_sink, + f'group_level_analysis_{method}_nsub_{nb_subjects}.@zstats') + group_level.connect(estimate_model, 'tstats', data_sink, + f'group_level_analysis_{method}_nsub_{nb_subjects}.@tstats') + group_level.connect(cluster,'threshold_file', data_sink, + f'group_level_analysis_{method}_nsub_{nb_subjects}.@threshold_file') + + if method in ('equalIndifference', 'equalRange'): + # Setup a one sample t-test + specify_model.inputs.contrasts = [ + ['group_mean', 'T', ['group_mean'], [1]], + ['group_mean_neg', 'T', ['group_mean'], [-1]] + ] + + # Function Node get_group_subjects - Get subjects in the group and in the subject_list + get_group_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_group_subjects' + ) + get_group_subjects.inputs.list_1 = get_group(method) + get_group_subjects.inputs.list_2 = self.subject_list + group_level.connect(get_group_subjects, 'out_list', get_copes, 'elements') + group_level.connect(get_group_subjects, 'out_list', get_varcopes, 'elements') + + # Function Node get_one_sample_t_test_regressors + # Get regressors in the equalRange and equalIndifference method case + regressors_one_sample = Node( + Function( + function = self.get_one_sample_t_test_regressors, + input_names = ['subject_list'], + output_names = ['regressors'] + ), + name = 'regressors_one_sample', + ) + group_level.connect(get_group_subjects, 'out_list', regressors_one_sample, 'subject_list') + group_level.connect(regressors_one_sample, 'regressors', specify_model, 'regressors') + + elif method == 'groupComp': + + # Select copes and varcopes corresponding to the selected subjects + # Indeed the SelectFiles node asks for all (*) subjects available + get_copes.inputs.elements = self.subject_list + get_varcopes.inputs.elements = self.subject_list + + # Setup a two sample t-test + specify_model.inputs.contrasts = [ + ['equalRange_sup', 'T', ['equalRange', 'equalIndifference'], [1, -1]] + ] + + # Function Node get_equal_range_subjects + # Get subjects in the equalRange group and in the subject_list + get_equal_range_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_equal_range_subjects' + ) + get_equal_range_subjects.inputs.list_1 = get_group('equalRange') + get_equal_range_subjects.inputs.list_2 = self.subject_list + + # Function Node get_equal_indifference_subjects + # Get subjects in the equalIndifference group and in the subject_list + get_equal_indifference_subjects = Node(Function( + function = list_intersection, + input_names = ['list_1', 'list_2'], + output_names = ['out_list'] + ), + name = 'get_equal_indifference_subjects' + ) + get_equal_indifference_subjects.inputs.list_1 = get_group('equalIndifference') + get_equal_indifference_subjects.inputs.list_2 = self.subject_list + + # Function Node get_two_sample_t_test_regressors + # Get regressors in the groupComp method case + regressors_two_sample = Node( + Function( + function = self.get_two_sample_t_test_regressors, + input_names = [ + 'equal_range_ids', + 'equal_indifference_ids', + 'subject_list', + ], + output_names = ['regressors', 'groups'] + ), + name = 'regressors_two_sample', + ) + regressors_two_sample.inputs.subject_list = self.subject_list + + # Add missing connections + group_level.connect( + get_equal_range_subjects, 'out_list', regressors_two_sample, 'equal_range_ids') + group_level.connect( + get_equal_indifference_subjects, 'out_list', + regressors_two_sample, 'equal_indifference_ids') + group_level.connect(regressors_two_sample, 'regressors', specify_model, 'regressors') + group_level.connect(regressors_two_sample, 'groups', specify_model, 'groups') + + return group_level + + def get_group_level_outputs(self): + """ Return all names for the files the group level analysis is supposed to generate. """ + + # Handle equalRange and equalIndifference + parameters = { + 'contrast_id': self.contrast_list, + 'method': ['equalRange', 'equalIndifference'], + 'file': [ + '_cluster0/zstat1_threshold.nii.gz', + '_cluster1/zstat2_threshold.nii.gz', + 'tstat1.nii.gz', + 'tstat2.nii.gz', + 'zstat1.nii.gz', + 'zstat2.nii.gz' + ] + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + 'group_level_analysis_{method}_nsub_'+f'{len(self.subject_list)}', + '_contrast_id_{contrast_id}', + '{file}' + ) + return_list = [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + # Handle groupComp + parameters = { + 'contrast_id': self.contrast_list, + 'file': [ + '_cluster0/zstat1_threshold.nii.gz', + 'tstat1.nii.gz', + 'zstat1.nii.gz' + ] + } + parameter_sets = product(*parameters.values()) + template = join( + self.directories.output_dir, + f'group_level_analysis_groupComp_nsub_{len(self.subject_list)}', + '_contrast_id_{contrast_id}', + '{file}' + ) + return_list += [template.format(**dict(zip(parameters.keys(), parameter_values)))\ + for parameter_values in parameter_sets] + + return return_list + + def get_hypotheses_outputs(self): + """ Return all hypotheses output file names. """ + + nb_sub = len(self.subject_list) + files = [ + # Hypothesis 1 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_1', 'randomise_tfce_corrp_tstat2'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 2 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_1', 'randomise_tfce_corrp_tstat2'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 3 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_1', 'randomise_tfce_corrp_tstat2'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 4 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_1', 'randomise_tfce_corrp_tstat2'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_1', 'zstat1.nii.gz'), + # Hypothesis 5 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_2', 'randomise_tfce_corrp_tstat1'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_2', 'zstat2.nii.gz'), + # Hypothesis 6 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_2', 'randomise_tfce_corrp_tstat1'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_2', 'zstat2.nii.gz'), + # Hypothesis 7 + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_2', 'randomise_tfce_corrp_tstat1'), + join(f'group_level_analysis_equalIndifference_nsub_{nb_sub}', + '_contrast_id_2', 'zstat1.nii.gz'), + # Hypothesis 8 + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_2', 'randomise_tfce_corrp_tstat1'), + join(f'group_level_analysis_equalRange_nsub_{nb_sub}', + '_contrast_id_2', 'zstat1.nii.gz'), + # Hypothesis 9 + join(f'group_level_analysis_groupComp_nsub_{nb_sub}', + '_contrast_id_2', 'randomise_tfce_corrp_tstat1'), + join(f'group_level_analysis_groupComp_nsub_{nb_sub}', + '_contrast_id_2', 'zstat1.nii.gz') + ] + return [join(self.directories.output_dir, f) for f in files] diff --git a/tests/pipelines/test_team_O21U.py b/tests/pipelines/test_team_O21U.py new file mode 100644 index 00000000..3d65297a --- /dev/null +++ b/tests/pipelines/test_team_O21U.py @@ -0,0 +1,128 @@ +#!/usr/bin/python +# coding: utf-8 + +""" Tests of the 'narps_open.pipelines.team_O21U' module. + +Launch this test with PyTest + +Usage: +====== + pytest -q test_team_O21U.py + pytest -q test_team_O21U.py -k +""" +from os.path import join, exists, abspath +from filecmp import cmp + +from pytest import helpers, mark +from nipype import Workflow, Node, Function +from nipype.interfaces.base import Bunch + +from narps_open.utils.configuration import Configuration +from narps_open.pipelines.team_O21U import PipelineTeamO21U + +class TestPipelinesTeamO21U: + """ A class that contains all the unit tests for the PipelineTeamO21U class.""" + + @staticmethod + @mark.unit_test + def test_create(): + """ Test the creation of a PipelineTeamO21U object """ + + pipeline = PipelineTeamO21U() + + # 1 - check the parameters + assert pipeline.fwhm == 5.0 + assert pipeline.team_id == 'O21U' + + # 2 - check workflows + assert pipeline.get_preprocessing() is None + assert isinstance(pipeline.get_run_level_analysis(), Workflow) + assert isinstance(pipeline.get_subject_level_analysis(), Workflow) + group_level = pipeline.get_group_level_analysis() + assert len(group_level) == 3 + for sub_workflow in group_level: + assert isinstance(sub_workflow, Workflow) + + @staticmethod + @mark.unit_test + def test_outputs(): + """ Test the expected outputs of a PipelineTeamO21U object """ + + pipeline = PipelineTeamO21U() + + # 1 - 1 subject outputs + pipeline.subject_list = ['001'] + helpers.test_pipeline_outputs(pipeline, [0, 4*1*2*4, 4*2*1 + 2*1, 6*2*2 + 3*2, 18]) + + # 2 - 4 subjects outputs + pipeline.subject_list = ['001', '002', '003', '004'] + helpers.test_pipeline_outputs(pipeline, [0, 4*4*2*4, 4*2*4 + 2*4, 6*2*2 + 3*2, 18]) + + @staticmethod + @mark.unit_test + def test_subject_information(): + """ Test the get_subject_information method """ + + # Get test files + test_file = join(Configuration()['directories']['test_data'], 'pipelines', 'events.tsv') + + # Prepare several scenarii + info_missed = PipelineTeamO21U.get_subject_information(test_file) + + # Compare bunches to expected + bunch = info_missed[0] + assert isinstance(bunch, Bunch) + assert bunch.conditions == ['trial', 'gain', 'loss'] + helpers.compare_float_2d_arrays(bunch.onsets, [ + [4.071, 11.834, 19.535, 27.535, 36.435], + [4.071, 11.834, 19.535, 27.535, 36.435], + [4.071, 11.834, 19.535, 27.535, 36.435] + ]) + helpers.compare_float_2d_arrays(bunch.durations, [ + [4.0, 4.0, 4.0, 4.0, 4.0], + [4.0, 4.0, 4.0, 4.0, 4.0], + [4.0, 4.0, 4.0, 4.0, 4.0] + ]) + helpers.compare_float_2d_arrays(bunch.amplitudes, [ + [1.0, 1.0, 1.0, 1.0, 1.0], + [14.0, 34.0, 38.0, 10.0, 16.0], + [6.0, 14.0, 19.0, 15.0, 17.0] + ]) + + @staticmethod + @mark.unit_test + def test_confounds_file(temporary_data_dir): + """ Test the get_confounds_file method """ + + # Get input and reference output file + confounds_file = abspath(join( + Configuration()['directories']['test_data'], 'pipelines', 'confounds.tsv')) + reference_file = abspath(join( + Configuration()['directories']['test_data'], + 'pipelines', 'team_O21U', 'confounds.tsv')) + + # Create new confounds file + confounds_node = Node(Function( + input_names = ['filepath', 'subject_id', 'run_id'], + output_names = ['confounds_file'], + function = PipelineTeamO21U.get_confounds_file), + name = 'confounds_node') + confounds_node.base_dir = temporary_data_dir + confounds_node.inputs.filepath = confounds_file + confounds_node.inputs.subject_id = 'sid' + confounds_node.inputs.run_id = 'rid' + confounds_node.run() + + # Check confounds file was created + created_confounds_file = abspath(join( + temporary_data_dir, confounds_node.name, 'confounds_file_sub-sid_run-rid.tsv')) + assert exists(created_confounds_file) + + # Check contents + assert cmp(reference_file, created_confounds_file) + + @staticmethod + @mark.pipeline_test + def test_execution(): + """ Test the execution of a PipelineTeamO21U and compare results """ + helpers.test_pipeline_evaluation('O21U') diff --git a/tests/pipelines/test_team_O6R6.py b/tests/pipelines/test_team_O6R6.py index ef13926b..bd571d4d 100644 --- a/tests/pipelines/test_team_O6R6.py +++ b/tests/pipelines/test_team_O6R6.py @@ -51,11 +51,11 @@ def test_outputs(): # 1 - 1 subject outputs pipeline.subject_list = ['001'] - helpers.test_pipeline_outputs(pipeline, [0, 2*1*4*4, 2*4*1 + 2*1, 8*4*2 + 4*4, 18]) + helpers.test_pipeline_outputs(pipeline, [0, 2*1*4*4, 2*4*1 + 2*1, 6*2*2 + 3*2, 18]) # 2 - 4 subjects outputs pipeline.subject_list = ['001', '002', '003', '004'] - helpers.test_pipeline_outputs(pipeline, [0, 2*4*4*4, 2*4*4 + 2*4, 8*4*2 + 4*4, 18]) + helpers.test_pipeline_outputs(pipeline, [0, 2*4*4*4, 2*4*4 + 2*4, 6*2*2 + 3*2, 18]) @staticmethod @mark.unit_test diff --git a/tests/test_data/pipelines/team_O21U/confounds.tsv b/tests/test_data/pipelines/team_O21U/confounds.tsv new file mode 100644 index 00000000..04e5f158 --- /dev/null +++ b/tests/test_data/pipelines/team_O21U/confounds.tsv @@ -0,0 +1,3 @@ +0.0 0.0 0.0 0.0 0.0 -0.0 0.0 +0.1352790093099999 -0.00996895 -0.0313444 -3.00931e-06 0.00132687 -0.000384193 -0.00016819 +0.12437666391 -2.56954e-05 -0.00923735 0.0549667 0.000997278 -0.00019745 -0.000398988