diff --git a/narps_open/pipelines/team_L3V8.py b/narps_open/pipelines/team_L3V8.py index 4088cb00..677eacee 100644 --- a/narps_open/pipelines/team_L3V8.py +++ b/narps_open/pipelines/team_L3V8.py @@ -115,9 +115,9 @@ def get_preprocessing(self): # connection node for motion correction preprocessing.connect(gunzip_func, 'out_file', motion_correction, 'in_files') - preprocessing.connect( motion_correction, 'realigned_files', data_sink, 'preprocessing.@realigned_files' ) - preprocessing.connect( motion_correction, 'realignment_parameters', data_sink, 'preprocessing.@realignment_parameters' ) - preprocessing.connect( motion_correction, 'mean_image', data_sink, 'preprocessing.@mean_image' ) + preprocessing.connect( motion_correction, 'realigned_files', data_sink, 'preprocessing.@realigned_files') + preprocessing.connect( motion_correction, 'realignment_parameters', data_sink, 'preprocessing.@realignment_parameters') + preprocessing.connect( motion_correction, 'mean_image', data_sink, 'preprocessing.@mean_image') # coregistration node @@ -129,8 +129,9 @@ def get_preprocessing(self): coregisteration.inputs.tolerance = [0.02, 0.02, 0.02, 0.001, 0.001, 0.001, 0.01, 0.01, 0.01, 0.001, 0.001, 0.001] # connect coreg - preprocessing.connect( motion_correction, 'mean_image', coregisteration, 'target' ) # target=mean - preprocessing.connect( gunzip_anat, 'out_file', coregisteration, 'source' ) # T1w=source anat + preprocessing.connect( motion_correction, 'mean_image', coregisteration, 'target') # target=mean + preprocessing.connect( gunzip_anat, 'out_file', coregisteration, 'source') # T1w=source anat + preprocessing.connect( coregisteration, 'coregistered_source', data_sink, 'preprocessing.@coregistered_source') # T1w=source anat # Get SPM Tissue Probability Maps file spm_tissues_file = join(SPMInfo.getinfo()['path'], 'tpm', 'TPM.nii') @@ -151,7 +152,7 @@ def get_preprocessing(self): [(spm_tissues_file, 6), 2, (False,False), (False, False)] ] # segmentation connection - preprocessing.connect(coregisteration, 'coregistered_files', segmentation, 'channel_files' ) + preprocessing.connect(coregisteration, 'coregistered_source', segmentation, 'channel_files') preprocessing.connect(segmentation, 'bias_corrected_images', data_sink, 'preprocessing.@bias_corrected_images') preprocessing.connect(segmentation, 'native_class_images', data_sink, 'preprocessing.@native_class_images') preprocessing.connect(segmentation, 'forward_deformation_field', data_sink, 'preprocessing.@forward_deformation_field') @@ -164,9 +165,11 @@ def get_preprocessing(self): normalization.inputs.write_voxel_sizes = [3, 3, 3] normalization.inputs.write_interp = 4 normalization.inputs.warping_regularization = [0, 0.001, 0.5, 0.05, 0.2] - + # normalization connection - preprocessing.connect(segmentation, 'forward_deformation_field', normalization, 'deformation_file') + preprocessing.connect(segmentation, 'forward_deformation_field', normalization, 'deformation_file') + preprocessing.connect(motion_correction, 'realigned_files', normalization, 'apply_to_files') + preprocessing.connect(normalization, 'normalized_files', data_sink, 'preprocessing.@normalized_files') @@ -186,7 +189,7 @@ def get_preprocessing(self): def get_run_level_analysis(self): - + return def get_subject_level_analysis(self): return