forked from asoroosh/DVARS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSEvars.m
429 lines (386 loc) · 15.6 KB
/
DSEvars.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
function [V,Stat]=DSEvars(V0,varargin)
%[V,Stat]=DSEvars(V0,varargin)
%
%%%INPUTS:
% V0: Can be (1) a string indicating the path to the
% nifti/cifti file (2) a numerical matrix of size IxT.
% Where I is number of voxels (I=Nx x Ny x Nz) and T is
% number of data-points.
% OPTIONS:
%
%
% 'DestDir' : Output directory. Should only be used when the
% input is a nifti image and user needs to save the
% S, D and E (3D and 4D) images.
% e.g.: [V,Stat]=DSEvars(V0,'DestDir','~/Where/to/save/')
%
% 'saveDSEtable': If triggered and followed by a path + filename.csv it
% saves the DSE table as a csv file
%
% 'Norm' : Intensity normalisation to a given scale.
% e.g.: [V,Stat]=DSEvars(V0,'Norm',100)
%
% 'Scale' : Scale the intensity between the data-sets.
% e.g.: [V,Stat]=DSEvars(V0,'Scale',1/10)
%
% 'verbose' : Set to 1 if you need the log of runing code
% [default:1]
% e.g.: [V,Stat]=DSEvars(V0,'verbose',1)
%%%OUTPUTS:
%
% V: Structure contains the variance components:
% V.{A,S,D,E}var: time series of var components
% V.w_{A,S,D,E}var: sum of mean squared of components
% V.g_{A,S,D,E}var: sum of mean squared of global components
% V.ng_{A,S,D,E}var: sum of mean squared of non-global components
% Stat: Structure contains the higher level parameters of the comps:
% Stat.Labels: Labels indicating the order of next vars
% Stat.SS: Sum-squared
% Stat.MS: Mean-squared
% Stat.RMS: Root-Mean-Squared
% Stat.Prntg: Percentage of the whole variance
% Stat.RelVar: Percentage of the whole variance relative
% to the iid case.
%
% Stat.DeltapDvar: \Delta\%D-var
% Stat.pDvar: \%D-var
% Stat.DeltapSvar: \Delta\%S-var
% Stat.pSvar: \%S-var
%
%
%%%NOTES:
% 1) It is recommended to only use time series of intra-cranial voxels as
% inclusding the extra-cranial may inflate the variance. You can use
% 'bet' in FSL package to remove the extra-cranial areas. The scripts
% automatically remove the zero/NaN voxels.
%
% 2) If a destination directory doesn't exist, the function automatically
% make a directory with the given 'DestDir'.
%
% 3) To fully exploit the DSEvars, the data should *NOT* be undergone any
% form of temporal filtering, as temporal filtering may remove the high
% freq fluctuations.
%
% 4) For inter-site/cohort comparison, it is recommended that the
% intensity is scale accordingly by option 'Norm' or 'Scale'.
%
% 5) If the input is set to be a NIFTI file, you require Nifti_Util
% (provided in the directory). For input of CIFTI you require to
% addpath the FieldTrip toolbox from:
% http://www.fieldtriptoolbox.org/reference/ft_read_cifti
%
%%%EXAMPLE:
%
% For iid case, numerical matrix:
%
% I=4e4; T=1200; Y=randn(I,T);
% [V,Stat]=DSEvars(Y);
% In this example, the function returns the variance components and print
% the SS and ANOVA tables for input of numerical matrix.
%
% OneSub='~/100307/rfMRI_REST1_LR.nii.gz' %a HCP Subject
% [V,Stat]=DSEvars(OneSub);
% In this example, the function returns the variance components and print
% the SS and ANOVA tables for input of nifti image.
%
% OneSub='~/100307/rfMRI_REST1_LR.nii.gz' %a HCP Subject
% [V,Stat]=DSEvars(OneSub,'verbose',1,'DestDir','~/temp','Norm',100);
%
% Stat.DpDVARS : \Delta\%D-var (Exceed fast Standardised DVARS)
% Stat.pDvar : \%D-var (Percentage of the whole var -A-var-)
% In this example, the function returns the variance components and print
% the SS and ANOVA tables for input of nifti image. It also saves the 4D
% and 3D images of variance components in directory '~/temp'.
%
%
%%%REFERENCES
%
% Afyouni S. & Nichols T.E., Insights and inference for DVARS, 2017
% http://www.biorxiv.org/content/early/2017/04/06/125021.1
%
%
%%%
% Soroosh Afyouni & Thomas Nichols, UoW, Feb 2017
%
% https://github.com/asoroosh/DVARS
% http://warwick.ac.uk/tenichols
%
% Please report bugs to [email protected]
%_________________________________________________________________________
fnnf=mfilename; if ~nargin; help(fnnf); return; end; clear fnnf;
%_________________________________________________________________________
%% ParCheck
t3_varn = {'Avar','Dvar','Svar','Evar'};
t3_rown = {'Whole','Global','non-Global'};
Row_labs = {'Avar','Dvar','Svar','Evar','g_Avar','g_Dvar','g_Svar','g_Evar'};
Col_labs = {'MS','RMS','Percentage_of_whole','Relative_to_iid'};
% Input Check-------------------------
gsrflag=0; verbose=1; DestDir=[]; DestDirTable=[]; md=[]; scl=[];
if sum(strcmpi(varargin,'gsrflag'))
gsrflag = varargin{find(strcmpi(varargin,'gsrflag'))+1};
end
if sum(strcmpi(varargin,'verbose'))
verbose = varargin{find(strcmpi(varargin,'verbose'))+1};
end
if sum(strcmpi(varargin,'saveDSEtable'))
DestDirTable = varargin{find(strcmpi(varargin,'saveDSEtable'))+1};
end
if sum(strcmpi(varargin,'destdir'))
DestDir = varargin{find(strcmpi(varargin,'destdir'))+1};
if sum(strcmpi(varargin,'images'))
imagelist = varargin{find(strcmpi(varargin,'images'))+1};
else
imagelist = {'Dvar','Svar'};
end
%add something here to show the var images, just in case; with a verbose
%trigger, of course!
end
if sum(strcmpi(varargin,'norm'))
scl = varargin{find(strcmpi(varargin,'norm'))+1};
end
if sum(strcmpi(varargin,'scale'))
scl = varargin{find(strcmpi(varargin,'scale'))+1};
md = 1;
end
% Add toolbox to open the images-------
if isempty(strfind(path,'Nifti_Util'))
if verbose; disp('-Nifti_Util added to the path.'); end;
addpath(genpath('Nifti_Util'));
end
%---temp
% if sum(strcmpi(varargin,'MeanImage'))
% mYr = varargin{find(strcmpi(varargin,'MeanImage'))+1};
% mYr=mYr(mYr~=0 & ~isnan(mYr));
% %size(mYr)
% md = median(mYr);
% end
if ischar(V0)
[ffpathstr,ffname,ffext]=fileparts(V0);
if verbose; disp(['-Path to the image is: ' ffpathstr]); end;
%if you are using MATLAB <2016, please replace 'contains' with 'strfind'
if contains(ffname,'.dtseries') || contains(ffext,'.dtseries')
if verbose; disp(['--File is CIFTI: ' ffname ffext]); end;
V1=ft_read_cifti(V0);
V2=V1.dtseries;
I0=size(V2,1); T0=size(V2,2);
Y=V2; clear V2 V1;
%if you are using MATLAB <2016, please replace 'contains' with 'strfind'
elseif ~contains(ffname,'.dtseries') || contains(ffname,'.nii')
if verbose; disp(['--File is NIFTI: ' ffname ffext]); end;
V1 = load_untouch_nii(V0);
V2 = V1.img;
X0 = size(V2,1); Y0 = size(V2,2); Z0 = size(V2,3); T0 = size(V2,4);
I0 = prod([X0,Y0,Z0]);
Y = reshape(V2,[I0,T0]); clear V2;
else
error('Unknown input image.')
end
if verbose; disp('-Image loaded.'); end;
elseif isnumeric(V0) %&& size(V0,1)>size(V0,2)
if verbose; disp('-Input is a Matrix.'); end;
if size(V0,1)<=size(V0,2)
warning('Check the input, matrix should be in form of IxT, where I=XxYxZ!');
end
Y = double(V0);
I0= size(Y,1); T0 = size(Y,2);
%elseif isnumeric(V0) && size(V0,1)<=size(V0,2)
% if verbose; disp('-Input is a Matrix.'); end;
% warning('Check the input, matrix should be in form of IxT, where I=XxYxZ!');
end
Y = double(Y);%to work with int 16bit as well.
mvY_WholeImage = mean(Y,2);
%Remove voxels of zeros/NaNs---------------------------------------------------
nan_idx = find(isnan(sum(Y,2)));
zeros_idx = find(sum(Y,2)==0);
idx = 1:I0;
idx([nan_idx;zeros_idx]) = [];
Y([nan_idx;zeros_idx],:) = [];
I1 = size(Y,1); %update number of voxels
if verbose; disp(['-Extra-cranial areas removed: ' num2str(size(Y,1)) 'x' num2str(size(Y,2))]); end;
mvY_Untouched = mean(Y,2);
% Intensity Normalisation------------------------------------------------------
IntnstyScl = @(Y,md,scl) (Y./md).*scl;
if ~isempty(scl) && isempty(md)
md = median(mean(Y,2)); %NB median of the mean image.
%md = mean(mean(Y,2)); %NB *mean* of the mean image.
Y = IntnstyScl(Y,md,scl);
if verbose; disp(['-Intensity Normalised by ' num2str(scl) '&' num2str(md) '.']); end;
elseif ~isempty(scl) && ~isempty(md)
assert(md==1,'4D mean in scalling cannot be anything other than 1!')
Y = IntnstyScl(Y,md,scl);
if verbose; disp(['-Intensity Scaled by ' num2str(scl) '.']); end;
elseif isempty(scl) && isempty(md)
if verbose; disp('-No normalisation/scaling has been set!'); end;
else
error('Something is wrong with param re: intensity normalisation')
end
%Centre the data-----------------------------
mvY_NormInt = mean(Y,2); %later will be used as grand mean! don't touch it!
dmeaner = repmat(mvY_NormInt,[1,T0]);
Y = Y-dmeaner; clear dmeaner
mvY_Demeaned = mean(Y,2);
%----------
if verbose; disp(['-Data centred. Untouched Grand Mean: ' num2str(mean(mvY_Untouched)) ', Post-norm Grand Mean: ' num2str(mean(mvY_NormInt)) ', Post demean: ' num2str(mean(mvY_Demeaned))]); end;
%Data GSRed--------------------------------ONLY FOR TEST-----------------
if gsrflag
Y = fcn_GSR(Y);
if verbose; disp('-Data GSRed.'); end;
end
%------------------------------------------ONLY FOR TEST-----------------
%% Lagged Images
B.Ybar = sum(Y)./I1; %global signal is here!
D = Y(:,1:end-1)-Y(:,2:end);
B.Dbar = sum(D)./I1;
S = Y(:,1:end-1)+Y(:,2:end);
B.Sbar = sum(S)./I1;
Ytail = Y(:,end); Yhead=Y(:,1);
B.Ytbar = sum(Ytail)./I1;
B.Y1bar = sum(Yhead)./I1;
%% DSE Var Images
%4D images
V_Img.Avar_ts = Y.^2;
V_Img.Dvar_ts = D.^2./4;
V_Img.Svar_ts = S.^2./4;
V_Img.Evar_ts = [Yhead,Ytail].^2./2;
%3D images -- averaged across time.
V_Img.Avar = mean(Y.^2,2);
V_Img.Dvar = mean(D.^2,2)./2;
V_Img.Svar = mean(S.^2,2)./2;
V_Img.Evar = mean([Yhead.^2,Ytail.^2],2); % <<<< should be checked
%% DSE Time series -- averaged across I
V.Avar_ts = mean(V_Img.Avar_ts);
V.Dvar_ts = mean(V_Img.Dvar_ts);
V.Svar_ts = mean(V_Img.Svar_ts);
V.Evar_ts = mean(V_Img.Evar_ts);
%% Save Images?
if ~isempty(DestDir) && ischar(V0)
%if ~any(strfind(path,'spm')); warning('**SPM has not been added to the path!**'); end;
if exist(DestDir,'dir')~=7; mkdir(DestDir); end;
%savedir = [pwd '/' DestDir '/'];
for is=imagelist
if verbose; disp(['****' is{1} ':']); end;
Var0_tmp = eval(['V_Img.' is{1} '_ts']);
Var1_tmp = zeros(I0,size(Var0_tmp,2));
Var1_tmp(idx,:) = Var0_tmp;
Y_tmp = reshape(Var1_tmp,[X0 Y0 Z0 size(Var1_tmp,2)]);
V_tmp = V1;
V_tmp.hdr.dime.dim(2:5) = [X0 Y0 Z0 size(Var1_tmp,2)];
V_tmp.img = Y_tmp;
save_untouch_nii(V_tmp,[DestDir is{1} '_ts.nii.gz']);
if verbose; disp([is{1} ' saved: ' DestDir is{1} '_ts.nii.gz']); end;
clear *_tmp
Var0_tmp = eval(['V_Img.' is{1}]);
Var1_tmp = zeros(I0,size(Var0_tmp,2));
Var1_tmp(idx) = Var0_tmp;
Y_tmp = flipud(reshape(Var1_tmp,[X0 Y0 Z0])); %flip back here because save_nii flips it!
nii_tmp = make_nii(sum(Y_tmp,4),[2,2,2],[0,0,0],64,['3D image of ' is{1}]);
save_nii(nii_tmp,[DestDir is{1} '.nii.gz'])
if verbose; disp([is{1} ' saved: ' DestDir is{1} '.nii.gz']); end;
clear *_tmp
end
clear V_Img;
else
if verbose
disp('-Variance images will NOT be saved:')
disp('-- Either destination directory was not set OR the input is not a nifti.')
end
clear V_Img;
end
%% Global - Res (SED vars)
V.w_Avar = sum(V.Avar_ts);
V.w_Dvar = sum(V.Dvar_ts);
V.w_Svar = sum(V.Svar_ts);
V.w_Evar = sum(V.Evar_ts);
%Global
V.g_Avar_ts = B.Ybar.^2;
V.g_Dvar_ts = B.Dbar.^2./4;
V.g_Svar_ts = B.Sbar.^2./4;
V.g_Evar_ts = B.Ybar([1,T0]).^2./2;
% Global ts (Just for vis)
V.g_Ats=B.Ybar;
V.g_Dts=B.Dbar./2;
V.g_Sts=B.Sbar./2;
V.g_Avar = sum(V.g_Avar_ts);
V.g_Dvar = sum(V.g_Dvar_ts);
V.g_Svar = sum(V.g_Svar_ts);
V.g_Evar = sum(V.g_Evar_ts);
%V.g_Avar = sum(B.Ybar.^2);
%V.g_Dvar = sum(B.Dbar.^2)./4;
%V.g_Svar = sum(B.Sbar.^2)./4;
%V.g_Evar = sum(B.Ybar([1,T0]).^2)./2;
%Non-Global
V.ng_Avar_ts = mean((Y-repmat(B.Ybar,[I1,1])).^2);
V.ng_Dvar_ts = mean((D-repmat(B.Dbar,[I1,1])).^2)./4;
V.ng_Svar_ts = mean((S-repmat(B.Sbar,[I1,1])).^2)./4;
V.ng_Evar_ts = mean([(Yhead-B.Y1bar).^2,(Ytail-B.Ytbar).^2])./2;
V.ng_Avar = sum(V.ng_Avar_ts);
V.ng_Dvar = sum(V.ng_Dvar_ts);
V.ng_Svar = sum(V.ng_Svar_ts);
V.ng_Evar = sum(V.ng_Evar_ts);
V.GrandMean_Untouched = mean(mvY_Untouched);
V.GrandMean_NormInt = mean(mvY_NormInt);
V.GrandMean_Demeaned = mean(mvY_Demeaned);
V.GranMean_WholeBrain = mean(mvY_WholeImage);
%V.ng_Avar = sum(mean((Y-repmat(B.Ybar,[I1,1])).^2));
%V.ng_Dvar = sum(mean((D-repmat(B.Dbar,[I1,1])).^2))./4;
%V.ng_Svar = sum(mean((S-repmat(B.Sbar,[I1,1])).^2))./4;
%V.ng_Evar = sum(mean([(Yhead-B.Y1bar).^2,(Ytail-B.Ytbar).^2]))./2;
% Sanity Chek - The moment of truth!
% gvars = V.g_Dvar+V.g_Svar+V.g_Evar;
% rgvars = V.rg_Dvar+V.rg_Svar+V.rg_Evar;
% WholeWholeVar_Test=gvars+rgvars;
% %assert(WholeWholeVar==WholeWholeVar_Test,'VarDecomp failed')
% disp(['WholeVar= ' num2str(V.w_Avar) ' , sum of decomp var= ' num2str(WholeWholeVar_Test)])
%% SED ANOVA table
SS = I1*[V.w_Avar,V.w_Dvar,V.w_Svar,V.w_Evar,...
V.g_Avar,V.g_Dvar,V.g_Svar,V.g_Evar];
MS = SS/I1/T0;
RMS = sqrt(MS);
Prntg = RMS.^2./RMS(1).^2*100;
Expd = [1,(T0-1)/T0/2,(T0-1)/T0/2,1/T0,...
[1,(T0-1)/T0/2,(T0-1)/T0/2,1/T0]./I1];
RelVar = Prntg./100./Expd;
Var_Tab = [V.w_Avar,V.w_Dvar,V.w_Svar,V.w_Evar;...
V.g_Avar,V.g_Dvar,V.g_Svar,V.g_Evar;...
V.ng_Avar,V.ng_Dvar,V.ng_Svar,V.ng_Evar];
DSETable = array2table([MS',RMS',Prntg',RelVar'],'VariableNames',Col_labs,'RowNames',Row_labs);
if ~isempty(DestDirTable)
writetable(DSETable,DestDirTable)
end
if verbose
disp('----------------------')
disp('Sum-of-Mean-Squared (SMS) Table')
disp(array2table(fix(Var_Tab),'VariableNames',t3_varn,'RowNames',t3_rown))
disp('------------')
disp(DSETable)
disp('----------------------')
end
%DSE ANOVE table
Stat.Labels = Row_labs;
Stat.SS = SS;
Stat.MS = MS;
Stat.RMS = RMS;
Stat.Prntg = Prntg;
Stat.RelVar = RelVar;
Stat.VT = Var_Tab;
%Config
Stat.dim = [I1 T0]; %Inter Cranial sizes
Stat.dim0 = [I0 T0]; %the 4D image initial dimensions
%Standardised measures
Stat.DeltapDvar = (V.Dvar_ts-median(V.Dvar_ts))./mean(V.Avar_ts)*100; % This is \Delta\%D-var i.e. How much it exceeded from it is *median* normalised by A-var.
Stat.DeltapSvar = (V.Svar_ts-median(V.Svar_ts))./mean(V.Avar_ts)*100; % This is \Delta\%S-var i.e. How much it exceeded from it is *median* normalised by A-var.
Stat.pDvar = V.Dvar_ts./mean(V.Avar_ts)*100; % & this is \%D-var. NB! *_ts is sum across *voxels*, I in nominator and denominator cancel out.
Stat.pSvar = V.Svar_ts./mean(V.Avar_ts)*100; % & this is \%S-var
%Mean -- 4 sanity checks
Stat.GranMean_WholeBrain = mean(mvY_WholeImage);
Stat.GrandMean_Untouched = mean(mvY_Untouched);
Stat.GrandMean_NormInt = mean(mvY_NormInt);
Stat.GrandMean_Demeaned = mean(mvY_Demeaned);
function gsrY=fcn_GSR(Y)
%Global Signal Regression. From FSLnets.
%For the fMRIDiag, it needs to be transposed.
% SA, UoW, 2017
Y=Y';
mgrot=mean(Y,2);
gsrY=Y-(mgrot*(pinv(mgrot)*Y));
gsrY=gsrY';