forked from esokolov/ml-course-hse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVGG19.py
149 lines (141 loc) · 5.93 KB
/
VGG19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import tensorflow as tf
import skimage.transform
MEAN_VALUES = np.array([103.939, 116.779, 123.68]).reshape((3,1,1))
def process_image(im):
result_w = 224
h, w, _ = im.shape
if h < w:
im = skimage.transform.resize(im, (result_w, w*result_w/h), preserve_range=True)
else:
im = skimage.transform.resize(im, (h*result_w/w, result_w), preserve_range=True)
# Central crop
h, w, _ = im.shape
im = im[h//2-result_w//2:h//2+result_w//2, w//2-result_w//2:w//2+result_w//2, :]
# Shuffle axes
im = np.swapaxes(np.swapaxes(im, 1, 2), 0, 1)
# Convert RGB to BGR
im = im[::-1, :, :]
im = im - MEAN_VALUES
return im[np.newaxis, :, :, :]
def max_pool(input_tensor, name):
with tf.variable_scope(name):
pool = tf.nn.max_pool(input_tensor,
ksize=[1, 1, 2, 2],
strides=[1, 1, 2, 2],
padding='SAME',
name='pooling',
data_format='NCHW')
return pool
def conv2d_layer(input_tensor, output_channels, name):
with tf.variable_scope(name):
kernel = tf.get_variable('kernel',
[3, 3, input_tensor.get_shape()[1], output_channels],
initializer=tf.truncated_normal_initializer(stddev=1e-2, seed=322),
dtype=tf.float32)
conv = tf.nn.conv2d(input_tensor,
kernel,
[1,1,1,1],
padding='SAME',
data_format='NCHW')
biases = tf.get_variable('biases',
[output_channels],
initializer=tf.constant_initializer(0.0),
dtype=tf.float32)
biased = tf.nn.bias_add(conv, biases, data_format='NCHW')
nonlinear = tf.nn.relu(biased)
return nonlinear
def dense_layer(input_tensor, num_neurons, name):
with tf.variable_scope(name) as scope:
weights = tf.get_variable('weights',
[input_tensor.get_shape()[1].value, num_neurons],
initializer=tf.truncated_normal_initializer(stddev=1e-2, seed=322),
dtype=tf.float32)
biases = tf.get_variable('biases',
[num_neurons],
initializer=tf.constant_initializer(0.0),
dtype=tf.float32)
dense = tf.matmul(input_tensor, weights) + biases
return dense
def inference(images):
# block 1
conv1_1 = conv2d_layer(images, 64, 'conv1_1')
conv1_2 = conv2d_layer(conv1_1, 64, 'conv1_2')
pool1 = max_pool(conv1_2, 'pool1')
# block 2
conv2_1 = conv2d_layer(pool1, 128, 'conv2_1')
conv2_2 = conv2d_layer(conv2_1, 128, 'conv2_2')
pool2 = max_pool(conv2_2, 'pool2')
# block 3
conv3_1 = conv2d_layer(pool2, 256, 'conv3_1')
conv3_2 = conv2d_layer(conv3_1, 256, 'conv3_2')
conv3_3 = conv2d_layer(conv3_2, 256, 'conv3_3')
conv3_4 = conv2d_layer(conv3_3, 256, 'conv3_4')
pool3 = max_pool(conv3_4, 'pool3')
# block 4
conv4_1 = conv2d_layer(pool3, 512, 'conv4_1')
conv4_2 = conv2d_layer(conv4_1, 512, 'conv4_2')
conv4_3 = conv2d_layer(conv4_2, 512, 'conv4_3')
conv4_4 = conv2d_layer(conv4_3, 512, 'conv4_4')
pool4 = max_pool(conv4_4, 'pool4')
# block 5
conv5_1 = conv2d_layer(pool4, 512, 'conv5_1')
conv5_2 = conv2d_layer(conv5_1, 512, 'conv5_2')
conv5_3 = conv2d_layer(conv5_2, 512, 'conv5_3')
conv5_4 = conv2d_layer(conv5_3, 512, 'conv5_4')
pool5 = max_pool(conv5_4, 'pool5')
# top
current_channels = pool5.get_shape()[1].value
current_height = pool5.get_shape()[2].value
current_width = pool5.get_shape()[3].value
reshaped = tf.reshape(pool5, [-1, current_channels*current_height*current_width])
dense6 = tf.nn.relu(dense_layer(reshaped, 4096, 'dense6'))
dropout6 = tf.nn.dropout(dense6, 0.5)
dense7 = tf.nn.relu(dense_layer(dropout6, 4096, 'dense7'))
dropout7 = tf.nn.dropout(dense7, 0.5)
dense8 = tf.nn.softmax(dense_layer(dropout7, 1000, 'dense8'))
return dense8
def dense6(images):
# block 1
conv1_1 = conv2d_layer(images, 64, 'conv1_1')
conv1_2 = conv2d_layer(conv1_1, 64, 'conv1_2')
pool1 = max_pool(conv1_2, 'pool1')
# block 2
conv2_1 = conv2d_layer(pool1, 128, 'conv2_1')
conv2_2 = conv2d_layer(conv2_1, 128, 'conv2_2')
pool2 = max_pool(conv2_2, 'pool2')
# block 3
conv3_1 = conv2d_layer(pool2, 256, 'conv3_1')
conv3_2 = conv2d_layer(conv3_1, 256, 'conv3_2')
conv3_3 = conv2d_layer(conv3_2, 256, 'conv3_3')
conv3_4 = conv2d_layer(conv3_3, 256, 'conv3_4')
pool3 = max_pool(conv3_4, 'pool3')
# block 4
conv4_1 = conv2d_layer(pool3, 512, 'conv4_1')
conv4_2 = conv2d_layer(conv4_1, 512, 'conv4_2')
conv4_3 = conv2d_layer(conv4_2, 512, 'conv4_3')
conv4_4 = conv2d_layer(conv4_3, 512, 'conv4_4')
pool4 = max_pool(conv4_4, 'pool4')
# block 5
conv5_1 = conv2d_layer(pool4, 512, 'conv5_1')
conv5_2 = conv2d_layer(conv5_1, 512, 'conv5_2')
conv5_3 = conv2d_layer(conv5_2, 512, 'conv5_3')
conv5_4 = conv2d_layer(conv5_3, 512, 'conv5_4')
pool5 = max_pool(conv5_4, 'pool5')
# top
current_channels = pool5.get_shape()[1].value
current_height = pool5.get_shape()[2].value
current_width = pool5.get_shape()[3].value
reshaped = tf.reshape(pool5, [-1, current_channels*current_height*current_width])
dense6 = tf.nn.relu(dense_layer(reshaped, 4096, 'dense6'))
return dense6
def assign_weights(trainable_variables, weights_list):
i = 0
assign_ops = []
for v in trainable_variables:
w = weights_list[i]
if w.ndim > 2:
w = np.moveaxis(w, [0,1,2,3], [3, 2, 0, 1])
assign_ops.append(v.assign(w))
i += 1
return assign_ops