diff --git a/README.md b/README.md index b5070be..7517aea 100644 --- a/README.md +++ b/README.md @@ -13,16 +13,16 @@ We are presenting a CNN approach using two convolutional networks to classify hi ## Getting Started ### Installation -- Install PyTorch and dependencies from http://pytorch.org -- Install python scikit-learn libraries [scikit-learn](https://github.com/scikit-learn/scikit-learn). -```bash -pip install -U scikit-learn -``` - Clone this repo: ```bash git clone https://github.com/ImagingLab/ICIAR2018 cd ICIAR2018 ``` +- Install PyTorch and dependencies from http://pytorch.org +- Install python requirements: +```bash +pip install -r requirements.txt +``` ### Dataset - We use the ICIAR2018 dataset. To train a model on the full dataset, please download it from the [official website](https://iciar2018-challenge.grand-challenge.org/dataset/) (registration required). The dataset is composed of 400 high resolution Hematoxylin and Eosin (H&E) stained breast histology microscopy images labelled as normal, benign, in situ carcinoma, and invasive carcinoma (100 images for each category): diff --git a/requirements.txt b/requirements.txt index bfdddea..bafdf95 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ -numpy==1.14.3 -scipy==1.0.1 -future==0.16.0 -matplotlib=2.2.2 -pillow==5.0.0 -scikit-learn==0.19.1 \ No newline at end of file +numpy ~=1.14.3 +scipy ~= 1.0.1 +future ~= 0.16.0 +matplotlib ~= 2.2.2 +pillow != 5.0.0 +scikit-learn ~= 0.19.1