-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
143 lines (118 loc) · 4.88 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import math
import numpy as np
def roty(points, # tensor, (3,n)
angle
):
device = points.device
C = math.cos(angle * math.pi / 180)
S = math.sin(angle * math.pi / 180)
roty_matrix = torch.tensor(
[
[C, 0, S],
[0, 1, 0],
[-S, 0, C]
]
).to(device)
return roty_matrix @ points
def reflect(points, # tensor, (3,n)
normal #tensor, (3,), assume unit norm
):
points = points.reshape(3,-1) # avoid error when n = 1
normal = normal.reshape(3,1) # avoid error when n = 1
proj = normal.t() @ points
return points - 2* normal* proj.reshape(1,-1)
def mag_wave_horizontal(
wav, # complex torch(1,1,1,1,Nx,Ny)
mag_ratio = 2
):
Ny = wav.size(dim=4)
Nx = wav.size(dim=5)
wav = torch.reshape(wav,(1,1,Ny,Nx)) # interpolate only accept 3~5 dimension
if torch.is_complex(wav):
real_part = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[1,mag_ratio], mode='bilinear')
imag_part = torch.nn.functional.interpolate(wav.imag, size=None, scale_factor=[1,mag_ratio], mode='bilinear')
wav = real_part + 1j*imag_part
else:
wav = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[1, mag_ratio], mode='bilinear')
wav = wav[:,:,:,np.arange(Nx)-Nx/2 +wav.size(dim=3)/2]
wav = torch.reshape(wav,(1,1,1,1,Ny,Nx))
return wav
def mag_wave(
wav, # complex torch(1,1,1,1,Nx,Ny)
mag_ratio = 0.5
):
Ny = wav.size(dim=4)
Nx = wav.size(dim=5)
wav = torch.reshape(wav,(1,1,Ny,Nx)) # interpolate only accept 3~5 dimension
device = wav.device
if torch.is_complex(wav):
if mag_ratio >1:
real_part = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[mag_ratio,mag_ratio], mode='bilinear')
imag_part = torch.nn.functional.interpolate(wav.imag, size=None, scale_factor=[mag_ratio,mag_ratio], mode='bilinear')
else:
real_part = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[mag_ratio,mag_ratio], mode='bilinear', antialias=True)
imag_part = torch.nn.functional.interpolate(wav.imag, size=None, scale_factor=[mag_ratio,mag_ratio], mode='bilinear', antialias=True)
wav = real_part + 1j*imag_part
else:
if mag_ratio >1:
wav = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[mag_ratio, mag_ratio], mode='bilinear')
else:
wav = torch.nn.functional.interpolate(wav.real, size=None, scale_factor=[mag_ratio, mag_ratio], mode='bilinear', antialias=True)
if mag_ratio >1:
new_wav = wav[:,:,-Ny//2 +wav.size(dim=2)//2:Ny//2 +wav.size(dim=2)//2,-Nx//2 +wav.size(dim=3)//2:Nx//2 +wav.size(dim=3)//2]
else:
new_wav = torch.zeros((1,1,Ny,Nx)).to(device)
if torch.is_complex(wav):
new_wav = new_wav+0j
new_wav[:,:,Ny//2 -wav.size(dim=2)//2:Ny//2 +wav.size(dim=2)//2,Nx//2 -wav.size(dim=3)//2:Nx//2 +wav.size(dim=3)//2] = wav
new_wav = torch.reshape(new_wav,(1,1,1,1,Ny,Nx))
return new_wav
def torch_2d_gaussian(
window_size = [9,9],
std = 2.0,
device = torch.device("cuda:0")
):
wx = window_size[0]
wy = window_size[0]
X,Y = torch.meshgrid([torch.linspace(-wx//2, wx-wx//2, steps=wx),
torch.linspace(-wy//2, wy-wy//2, steps=wy)], indexing='xy')
X = X.to(device)
Y = Y.to(device)
return torch.exp(-(X**2 + Y**2)/2/std**2)
def torch_2d_sinc(
window_size = [9,9],
scl = 2.0,
device = torch.device("cuda:0")
):
a = scl/2 # half of the width of the central lobe
wx = window_size[0]
wy = window_size[0]
X,Y = torch.meshgrid([torch.linspace(-wx//2, wx-wx//2, steps=wx),
torch.linspace(-wy//2, wy-wy//2, steps=wy)], indexing='xy')
X = X.to(device)
Y = Y.to(device)
return torch.sinc(X/a)*torch.sinc(Y/a)
class Points2Plane_Prop():
def __init__(
self,
points_xyz, #Tensor: (n, 3)
plane_xyz, #Tensor: (h, w, 3)
lam,
dx
):
# Rayleigh-Sommerfeld
self.points_xyz = points_xyz
self.plane_xyz = plane_xyz
self.dist = -2*torch.matmul(plane_xyz, torch.t(points_xyz)) #(h, w, n)
self.dist += torch.sum(torch.square(points_xyz), dim =1).reshape(1,1,-1)
self.dist += torch.sum( torch.square(plane_xyz), dim =2, keepdim = True)
self.dist = torch.sqrt(self.dist)
assert( torch.min(torch.abs(self.dist.reshape(-1))) > 10* dx, 'Need to satisfy far field assumption')
self.phasor = torch.exp( 2j * torch.pi * self.dist / lam) /(self.dist) * (dx**2) /lam /(1j)
self.phasor = torch.conj(self.phasor) # need to find out why the conj is needed
def forward(
self,
point_values #(n,)
):
return torch.sum(self.phasor * point_values, dim = 2) #(h, w)