forked from CakeML/cakeml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfTacticsLib.sml
732 lines (613 loc) · 19.3 KB
/
cfTacticsLib.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
(*
Various tactics for reasoning about CF-based goals in HOL.
*)
structure cfTacticsLib (*:> cfTacticsLib*) =
struct
open preamble
open ConseqConv
open set_sepTheory cfAppTheory cfHeapsTheory cfTheory cfTacticsTheory
open helperLib cfHeapsBaseLib cfHeapsLib cfTacticsBaseLib evarsConseqConvLib
open cfAppLib cfSyntax semanticPrimitivesSyntax
open xcf;
val ERR = mk_HOL_ERR "cfTacticsLib";
fun constant_printer s _ _ _ (ppfns:term_pp_types.ppstream_funs) _ _ _ =
let
open Portable term_pp_types smpp
val str = #add_string ppfns
in str s end
val ellipsis_pp = constant_printer "(…)"
val printers = [
("extend_env_ellipsis", ``extend_env _ _ _``, ellipsis_pp),
("extend_env_rec_ellipsis", ``extend_env_rec _ _ _ _ _``, ellipsis_pp),
("extend_env_with_ellipsis", ``extend_env _ _ _ with v := _``, ellipsis_pp),
("extend_env_rec_with_ellipsis", ``extend_env_rec _ _ _ _ _ with v := _``,
ellipsis_pp)
]
fun hide_environments b =
if b then app temp_add_user_printer printers
else app (ignore o temp_remove_user_printer) (map #1 printers)
val _ = hide_environments true
(*------------------------------------------------------------------*)
val cs = computeLib.the_compset
val () = listLib.list_rws cs
val () = basicComputeLib.add_basic_compset cs
val () = semanticsComputeLib.add_semantics_compset cs
val () = ml_progComputeLib.add_env_compset cs
val () = cfComputeLib.add_cf_aux_compset cs
val () = computeLib.extend_compset [
computeLib.Defs [
(* TS: it's quite unclear to me why CF does this, when ml_progScript is so
careful to ensure that these definitions aren't in the compset. I've tried
adjusting it, but it results in far too much work. *)
ml_progTheory.merge_env_def,
ml_progTheory.write_def,
ml_progTheory.write_mod_def,
ml_progTheory.write_cons_def,
ml_progTheory.empty_env_def
(*semanticPrimitivesTheory.merge_alist_mod_env_def*)
]] cs
val _ = (max_print_depth := 15)
val eval = computeLib.CBV_CONV cs THENC EVAL (* TODO: remove EVAL *)
val eval_tac = CONV_TAC eval
fun eval_pat t = (compute_pat cs t) THENC EVAL (* TODO: same *)
fun eval_pat_tac pat = CONV_TAC (DEPTH_CONV (eval_pat pat))
local
(* from bossLib.sml *)
open simpLib
fun stateful f ssfl thm =
let
val ss = List.foldl (simpLib.++ o Lib.swap) (srw_ss()) ssfl
in
f ss thm
end
val let_arith_list = [boolSimps.LET_ss, numSimps.ARITH_ss]
in
val simp_conv = stateful SIMP_CONV let_arith_list
val simp_rule = stateful SIMP_RULE let_arith_list
end
(*------------------------------------------------------------------*)
fun process_topdecs q = cfNormaliseLib.normalise_prog (parse_topdecs q)
(*------------------------------------------------------------------*)
fun head_unfold_conv thm =
TRY_CONV hnf_conv THENC
rewr_head_conv thm THENC
TRY_CONV hnf_conv
fun head_unfold thm = CONV_TAC (head_unfold_conv thm)
val reducible_pats = [
``find_recfun _ _``,
``is_bound_Fun _ _``,
``dest_opapp _``,
``exp2v _ _``,
``exp2v_list _ _``,
``do_con_check _ _ _``,
``build_conv _ _ _``,
``nsLookup _ _``,
``nsLookup_Short _ _``,
``nsLookup_Mod1 _ _``,
``Fun_body _``
]
val old_reduce_conv =
DEPTH_CONV (
List.foldl (fn (pat, conv) => (eval_pat pat) ORELSEC conv)
ALL_CONV reducible_pats
) THENC
(simp_conv [])
val reduce_conv =
(DEPTH_CONV (
List.foldl (fn (pat, conv) => (eval_pat pat) ORELSEC conv)
ALL_CONV reducible_pats
)) THENC
(STRIP_QUANT_CONV (simp_conv []))
THENC (SIMP_CONV (list_ss) [])
val reduce_tac = CONV_TAC reduce_conv
fun err_tac orig msg : tactic =
fn _ => raise ERR orig msg
(* [xpull] *)
(* xx have a proper cfSyntax? *)
fun cf_get_precondition t = rand (rator t)
(* xx *)
val cf_defs =
[cf_lit_def, cf_con_def, cf_var_def, cf_let_def, cf_opn_def, cf_opb_def,
cf_app_def, cf_fun_def, cf_fun_rec_def, cf_ref_def, cf_assign_def,
cf_deref_def, cf_aalloc_def, cf_asub_def, cf_alength_def, cf_aupdate_def,
cf_aw8alloc_def, cf_aw8sub_def, cf_aw8length_def, cf_aw8update_def,
cf_copyaw8aw8_def, cf_log_def, cf_if_def, cf_match_def, cf_ffi_def,
cf_raise_def, cf_handle_def]
val cleanup_exn_side_cond =
simp [cfHeapsBaseTheory.SEP_IMPPOSTv_POSTe_left,
cfHeapsBaseTheory.SEP_IMPPOSTv_POSTf_left,
cfHeapsBaseTheory.SEP_IMPPOSTv_POSTd_left,
cfHeapsBaseTheory.SEP_IMPPOSTv_POSTed_left,
cfHeapsBaseTheory.SEP_IMPPOSTe_POSTv_left,
cfHeapsBaseTheory.SEP_IMPPOSTe_POSTf_left,
cfHeapsBaseTheory.SEP_IMPPOSTe_POSTd_left,
cfHeapsBaseTheory.SEP_IMPPOSTe_POSTvd_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTv_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTe_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTd_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTve_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTvd_left,
cfHeapsBaseTheory.SEP_IMPPOSTf_POSTed_left,
cfHeapsBaseTheory.SEP_IMPPOSTd_POSTv_left,
cfHeapsBaseTheory.SEP_IMPPOSTd_POSTe_left,
cfHeapsBaseTheory.SEP_IMPPOSTd_POSTf_left,
cfHeapsBaseTheory.SEP_IMPPOSTd_POSTve_left,
cfHeapsBaseTheory.SEP_IMPPOSTv_inv_POSTv_left,
cfHeapsBaseTheory.SEP_IMPPOSTe_inv_POSTe_left
]
val xlocal =
FIRST [
first_assum MATCH_ACCEPT_TAC,
(HO_MATCH_MP_TAC app_local \\ fs [] \\ NO_TAC),
(HO_MATCH_ACCEPT_TAC cf_cases_local \\ NO_TAC),
(fs (local_is_local :: cf_defs) \\ NO_TAC)
] (* todo: is_local_pred *)
fun xpull_check_not_needed (g as (_, w)) =
let val H = cf_get_precondition w
in hpullable_rec H; ALL_TAC g end
fun xpull_core (g as (_, w)) =
if is_sep_imp w orelse is_sep_imppost w then
hpull g
else
hclean g
val xpull =
xpull_core \\ rpt strip_tac THEN1 (TRY xlocal)
(* [xsimpl] *)
val sep_imp_instantiate_tac =
TRY hinst \\
simp [SEP_IMP_REFL, cfHeapsBaseTheory.hsimpl_gc]
val xsimpl =
simp [PULL_EXISTS,BOOL_T,BOOL_F] \\
CHANGED_TAC (rpt (hsimpl \\ sep_imp_instantiate_tac))
ORELSE sep_imp_instantiate_tac
(* [xcf], [xcfs] *)
(* Implemented in xcf.sml *)
(* [xlet] *)
fun xlet_core cont0 cont1 cont2 =
xpull_check_not_needed \\
head_unfold cf_let_def \\
irule local_elim \\ hnf \\
simp [namespaceTheory.nsOptBind_def] \\
cont0 \\
rpt CONJ_TAC THENL [
all_tac,
TRY (MATCH_ACCEPT_TAC cfHeapsBaseTheory.SEP_IMPPOSTv_inv_POSTv_left),
cont1 \\ cont2
]
val res_CASE_tm =
CONJ_PAIR cfHeapsBaseTheory.res_case_def
|> fst |> SPEC_ALL |> concl
|> lhs |> strip_comb |> fst
val POSTv_tm =
cfHeapsBaseTheory.POSTv_def |> SPEC_ALL |> concl
|> lhs |> strip_comb |> fst
val POST_tm =
cfHeapsBaseTheory.POST_def |> SPEC_ALL |> concl
|> lhs |> strip_comb |> fst
fun vname_of_post fallback Qtm = let
val vname_lam = fst o dest_var o fst o dest_abs
fun vname_res_CASE_lam tm = let
val body = dest_abs tm |> snd
in
if body ~~ res_CASE_tm then
List.nth (strip_comb body |> snd, 1)
|> vname_lam
else fail ()
end
fun vname_POSTv tm = let
val (base, args) = strip_comb tm
in if base ~~ POSTv_tm then vname_lam (List.hd args)
else fail()
end
fun vname_POST tm = let
val (base, args) = strip_comb tm
in if base ~~ POST_tm then vname_lam (List.hd args)
else fail()
end
in
vname_POSTv Qtm handle HOL_ERR _ =>
vname_POST Qtm handle HOL_ERR _ =>
vname_res_CASE_lam Qtm handle HOL_ERR _ =>
fallback
end
(* temporary basic wrapper until evars *)
fun xlet Q (g as (asl, w)) = let
val ctx = free_varsl (w :: asl)
val name = vname_of_post "v" (Term Q)
val name' = prim_variant ctx (mk_var (name, v_ty)) |> dest_var |> fst
val qname = [QUOTE name']
in
xlet_core
(qexists_tac Q)
(qx_gen_tac qname \\ simp [])
(TRY xpull)
g
end
(* [xfun] *)
val reduce_spec_conv =
STRIP_QUANT_CONV (LAND_CONV eval) THENC
simp_conv [LENGTH_EQ_NUM_compute, PULL_EXISTS]
val reduce_curried_conv = RATOR_CONV (RAND_CONV eval)
val fun_reduce_conv =
QUANT_CONV (
LAND_CONV (
LAND_CONV reduce_curried_conv THENC
RAND_CONV reduce_spec_conv
)
)
fun fun_rec_aux_unfold_conv tm = let
val base_case = fst (CONJ_PAIR fun_rec_aux_def)
val ind_case = fst (CONJ_PAIR (snd (CONJ_PAIR fun_rec_aux_def)))
val base_conv = REWR_CONV base_case
val ind_conv =
REWR_CONV ind_case THENC
LAND_CONV (
LAND_CONV reduce_curried_conv THENC
RAND_CONV reduce_spec_conv
) THENC
RAND_CONV (
fun_rec_aux_unfold_conv
)
in (base_conv ORELSEC ind_conv) tm end
val fun_rec_reduce_conv = let
val reduce_length =
eval THENC
simp_conv [LENGTH_EQ_NUM_compute, PULL_EXISTS]
in
simp_conv [] THENC
QUANT_CONV (
LAND_CONV reduce_length THENC
RAND_CONV (
LAND_CONV eval THENC
RAND_CONV (
DEPTH_CONV (eval_pat ``letrec_pull_params _``)
)
)
) THENC
simp_conv [PULL_EXISTS] THENC
QUANT_CONV fun_rec_aux_unfold_conv
end
val xfun_norec_core =
head_unfold cf_fun_def \\
irule local_elim \\ hnf \\
CONV_TAC fun_reduce_conv
val xfun_rec_core =
head_unfold cf_fun_rec_def \\
irule local_elim \\ hnf \\
CONV_TAC fun_rec_reduce_conv
fun xfun_core (g as (_, w)) =
if is_cf_fun w then
xfun_norec_core g
else if is_cf_fun_rec w then
xfun_rec_core g
else
err_tac "xfun" "goal is not a cf_fun or cf_fun_rec" g
val simp_spec = CONV_RULE (REPEATC (reduce_conv THENC PURE_ONCE_REWRITE_CONV[cf_def]))
fun xfun qname =
xpull_check_not_needed \\
xfun_core \\
qx_gen_tac qname \\
disch_then (fn th => assume_tac (simp_spec th))
fun xfun_spec qname qspec =
xfun_core \\
qx_gen_tac qname \\
disch_then (fn th =>
let val (curried_th, spec_th) = CONJ_PAIR th
val spec_th = simp_spec spec_th
in assume_tac curried_th \\
Tactical.REVERSE (qsuff_tac qspec) THENL [
assume_tac spec_th,
strip_tac
]
end
) ORELSE FAIL_TAC "invalid spec"
(* [xapply] *)
fun xapply_core H cont1 cont2 =
irule local_frame_gc THEN
CONJ_TAC THEN1 xlocal THEN
CONSEQ_CONV_TAC (K (
ecc_conseq_conv (
conj1_ecc (irule_ecc H)
)
)) \\
CONV_TAC (DEPTH_CONV (REWR_CONV ConseqConvTheory.AND_CLAUSES_TX))
fun xapply H =
xpull_check_not_needed \\
xapply_core H all_tac all_tac
ORELSE err_tac "xapply" "Failed to apply the given theorem"
(* [xspec] *)
datatype spec_kind =
CF_spec
| Translator_spec
fun spec_kind_toString CF_spec = "CF"
| spec_kind_toString Translator_spec = "translator"
fun concl_tm tm =
let
val thm' = Drule.IRULE_CANON (ASSUME tm)
val (_, body) = strip_forall (concl thm')
in
if is_imp body then
(snd o dest_imp) body
else
body
end
fun goal_app_infos tm : hol_type * term =
let val (p, f_tm, _, _, _) = cfAppSyntax.dest_app tm
val ffi_ty = cfHeapsBaseSyntax.dest_ffi_proj (type_of p)
in (ffi_ty, f_tm) end
fun is_cf_spec_for f tm =
(concl_tm tm |> goal_app_infos |> snd) ~~ f
handle HOL_ERR _ => false
fun is_arrow_spec_for f tm =
let val tm = tm |> strip_imp |> #2 in
ml_translatorSyntax.is_Arrow (tm |> rator |> rator) andalso
(rand tm) ~~ f
end handle HOL_ERR _ => false
fun spec_kind_for f tm : spec_kind option =
if is_cf_spec_for f tm then SOME CF_spec
else if is_arrow_spec_for f tm then SOME Translator_spec
else NONE
fun is_spec_for f tm : bool =
spec_kind_for f tm <> NONE
fun xspec_in_asl f asl : (spec_kind * term) option =
find_map (fn tm =>
case spec_kind_for f tm of
SOME k => SOME (k, tm)
| NONE => NONE)
asl
fun xspec_in_db f : (string * string * spec_kind * thm) option =
case DB.matchp (fn thm => is_spec_for f (concl thm)) [] of
((thy, name), (thm, _)) :: _ =>
(case spec_kind_for f (concl thm) of
SOME k => SOME (thy, name, k, thm)
| NONE => fail())
| _ => NONE
fun cf_spec (ffi_ty : hol_type) (kind : spec_kind) (spec : thm) : thm =
case kind of
CF_spec => spec
| Translator_spec => app_of_Arrow_rule ffi_ty spec
(* todo: variants *)
fun xspec ffi_ty f (ttac: thm_tactic) (g as (asl, w)) =
case xspec_in_asl f asl of
SOME (k, a) =>
(print
("Using a " ^ (spec_kind_toString k) ^
" specification from the assumptions\n");
ttac (cf_spec ffi_ty k (ASSUME a)) g)
| NONE =>
case xspec_in_db f of
SOME (thy, name, k, thm) =>
(print ("Using " ^ (spec_kind_toString k) ^
" specification " ^ name ^
" from theory " ^ thy ^ "\n");
ttac (cf_spec ffi_ty k thm) g)
| NONE =>
raise ERR "xspec" ("Could not find a specification for " ^
fst (dest_const f))
(* [xapp] *)
val unfolded_app_reduce_conv =
let
fun fail_if_F_conv msg tm =
if Feq tm then raise ERR "xapp" msg
else REFL tm
val fname_lookup_reduce_conv =
reduce_conv THENC
(fail_if_F_conv "Unbound function")
val args_lookup_reduce_conv =
reduce_conv THENC
(fail_if_F_conv "Unbound argument(s)")
in
STRIP_QUANT_CONV (
FORK_CONV (
fname_lookup_reduce_conv,
(LAND_CONV args_lookup_reduce_conv)
)
)
end
val unfold_cf_app =
head_unfold cf_app_def \\
irule local_elim \\ hnf \\
CONV_TAC unfolded_app_reduce_conv \\
reduce_tac
val xapp_prepare_goal =
xpull_check_not_needed \\
(fn (g as (_, w)) =>
if is_cf_app w then unfold_cf_app g
else if cfAppSyntax.is_app w then all_tac g
else err_tac "xapp"
"Goal is not of the right form (must be a cf_app or app)" g)
(* This tactical assumes the goal is of the form [app _ _ _ _ _].
This is the case after calling [xapp_prepare_goal] (if it doesn't fail).
*)
fun app_f_tac tmtac (g as (_, w)) = tmtac (goal_app_infos w) g
fun xapp_common spec do_xapp =
xapp_prepare_goal \\
app_f_tac (fn (ffi_ty, f) =>
case spec of
SOME thm =>
(case spec_kind_for f (concl thm) of
SOME k => do_xapp (cf_spec ffi_ty k thm)
| NONE => failwith "Invalid specification")
| NONE => xspec ffi_ty f do_xapp)
fun xapp_xapply_no_simpl K =
FIRST [irule K, xapply_core K all_tac all_tac] ORELSE
err_tac "xapp" "Could not apply specification"
fun xapp_core spec =
xapp_common spec xapp_xapply_no_simpl
val xapp = xapp_core NONE
fun xapp_spec spec = xapp_core (SOME spec)
(* [xret] *)
val xret_irule_lemma =
FIRST [(* irule xret_lemma_unify,*)
HO_MATCH_MP_TAC xret_lemma \\ conj_tac]
val xret_no_gc_core =
FIRST [(*irule xret_lemma_unify,*)
(* todo evars *) HO_MATCH_MP_TAC xret_no_gc_lemma \\ conj_tac]
val xlit_core =
head_unfold cf_lit_def \\ cbv
val xcon_core =
head_unfold cf_con_def \\ reduce_tac
val xvar_core =
head_unfold cf_var_def \\ reduce_tac
fun xret_pre cont1 cont2 (g as (_, w)) =
(xpull_check_not_needed \\
(if is_cf_lit w then xlit_core
else if is_cf_con w then xcon_core
else if is_cf_var w then xvar_core
else fail ()) \\
cont1 \\
cleanup_exn_side_cond
) g
(* todo: also do stuff with lets *)
val xret = xret_pre xret_irule_lemma (TRY xpull)
val xlit = xret
val xcon = xret
val xvar = xret
(* todo: xrets *)
(* [xlog] *)
val xlog_base =
xpull_check_not_needed \\
head_unfold cf_log_def \\
irule local_elim \\ hnf \\
reduce_tac \\
cleanup_exn_side_cond \\
TRY (asm_exists_tac \\ simp [])
val xlog = xlog_base
(* [xif] *)
val xif_base =
xpull_check_not_needed \\
head_unfold cf_if_def \\
irule local_elim \\ hnf \\
reduce_tac \\
TRY (asm_exists_tac \\ simp [] \\ conj_tac \\ DISCH_TAC)
val xif = xif_base
(* [xcases] *)
fun clean_cases_conv tm = let
val cond_conv =
HO_REWR_CONV exists_v_of_pat_norest_length THENC
STRIP_QUANT_CONV (LAND_CONV (RHS_CONV eval)) THENC
STRIP_QUANT_CONV (RAND_CONV (LAND_CONV (RHS_CONV eval))) THENC
simp_conv [LENGTH_EQ_NUM_compute, PULL_EXISTS] THENC
STRIP_QUANT_CONV
(LHS_CONV eval THENC simp_conv [option_CLAUSES])
val then_conv =
HO_REWR_CONV forall_v_of_pat_norest_length THENC
STRIP_QUANT_CONV (LAND_CONV (RHS_CONV eval)) THENC
STRIP_QUANT_CONV (RAND_CONV (LAND_CONV (RHS_CONV eval))) THENC
simp_conv [LENGTH_EQ_NUM_compute, PULL_EXISTS] THENC
STRIP_QUANT_CONV
(LAND_CONV (LHS_CONV eval) THENC
simp_conv [option_CLAUSES])
val else_conv =
TRY_CONV (LAND_CONV clean_cases_conv ORELSEC
simp_conv [cf_bottom_def])
in
(RATOR_CONV (RATOR_CONV (RAND_CONV cond_conv)) THENC
RATOR_CONV (RAND_CONV then_conv) THENC
RAND_CONV else_conv) tm
end
val unfold_cases =
simp [cf_cases_def] \\
CONSEQ_CONV_TAC (CONSEQ_HO_REWRITE_CONV ([local_elim], [], [])) \\
CONV_TAC (LAND_CONV clean_cases_conv) \\
simp []
fun validate_pat_conv tm = let
val conv =
REWR_CONV validate_pat_def THENC
RAND_CONV eval THENC
LAND_CONV (REWR_CONV pat_typechecks_def) THENC
eval
val conv' = (QUANT_CONV conv) THENC simp_conv []
val th = conv' tm
in if Teq (rhs (concl th)) then th else fail () end
val validate_pat_all_conv =
REPEATC (
RAND_CONV validate_pat_conv THENC RW.RW_CONV [boolTheory.AND_CLAUSES]
)
local
val can_pmatch_all_tm =
semanticPrimitivesTheory.can_pmatch_all_def
|> CONJUNCT2 |> SPEC_ALL |> concl |> rand |> rand
val c1 = SIMP_CONV (srw_ss()) [evaluatePropsTheory.can_pmatch_all_EVERY,
evaluatePropsTheory.pmatch_not_type_error_EQ,
semanticPrimitivesTheory.same_type_def]
val c2 = eval THENC SIMP_CONV (srw_ss()) [] THENC eval
in
fun can_pmatch_all_conv tm =
if not (can (match_term can_pmatch_all_tm) tm)
then NO_CONV tm else let
val th1 = QCONV (c1 THENC c2) tm
in if Teq (rhs (concl th1)) then th1 else QCONV c1 tm end
val reduce_can_pmatch_all_tac =
CONV_TAC (ONCE_DEPTH_CONV can_pmatch_all_conv)
\\ PURE_REWRITE_TAC [boolTheory.AND_CLAUSES]
end
val xcases =
xpull_check_not_needed \\
unfold_cases \\
CONV_TAC validate_pat_all_conv \\
reduce_can_pmatch_all_tac
(* [xmatch] *)
val xmatch_base =
xpull_check_not_needed \\
head_unfold cf_match_def \\ irule local_elim \\
reduce_tac \\
xcases
val xmatch = xmatch_base
(* [xffi] *)
val xffi =
xpull_check_not_needed \\
head_unfold cf_ffi_def \\
irule local_elim \\ hnf \\
simp [app_ffi_def] \\ reduce_tac \\
conj_tac \\ cleanup_exn_side_cond
(* [xraise] *)
val xraise =
xpull_check_not_needed \\
head_unfold cf_raise_def \\ reduce_tac \\
HO_MATCH_MP_TAC xret_lemma \\
cleanup_exn_side_cond
(* [xhandle] *)
fun xhandle_core cont0 cont1 =
xpull_check_not_needed \\
head_unfold cf_handle_def \\
irule local_elim \\ hnf \\
cont0 \\
CONJ_TAC THENL [
CONJ_TAC THENL [all_tac, cleanup_exn_side_cond],
cont1
]
fun xhandle Q (g as (asl, w)) = let
val ctx = free_varsl (w :: asl)
val name = vname_of_post "e" (Term Q)
val name' =
prim_variant ctx (mk_var (name, v_ty))
|> dest_var |> fst
val qname = [QUOTE name']
in
xhandle_core
(qexists_tac Q)
(qx_gen_tac qname \\
reduce_tac \\
TRY xpull)
g
end
(* [xopb] *)
val xopb =
xpull_check_not_needed \\
head_unfold cf_opb_def \\
reduce_tac \\
irule local_elim \\ hnf \\
simp[app_opb_def, semanticPrimitivesTheory.opb_lookup_def] \\
cleanup_exn_side_cond
(* [xopn] *)
val xopn =
xpull_check_not_needed \\
head_unfold cf_opn_def \\
reduce_tac \\
irule local_elim \\ hnf \\
simp[app_opn_def, semanticPrimitivesTheory.opn_lookup_def] \\
cleanup_exn_side_cond
val xref = xpull_check_not_needed \\ head_unfold cf_ref_def \\
irule local_elim \\ hnf \\ simp[app_ref_def] \\ reduce_tac
end