forked from mrwyattii/NHANES-Downloader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data.py
executable file
·219 lines (175 loc) · 7.41 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
## Copyright (c)
## 2017 by The University of Delaware
## Contributors: Michael Wyatt
## Affiliation: Global Computing Laboratory, Michela Taufer PI
## Url: http://gcl.cis.udel.edu/, https://github.com/TauferLab
##
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1. Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
##
## 2. Redistributions in binary form must reproduce the above copyright
## notice, this list of conditions and the following disclaimer in the
## documentation and/or other materials provided with the distribution.
##
## 3. If this code is used to create a published work, one or both of the
## following papers must be cited.
##
## M. Wyatt, T. Johnston, M. Papas, and M. Taufer. Development of a
## Scalable Method for Creating Food Groups Using the NHANES Dataset
## and MapReduce. In Proceedings of the ACM Bioinformatics and
## Computational Biology Conference (BCB), pp. 1 - 10. Seattle, WA,
## USA. October 2 - 4, 2016.
##
## 4. Permission of the PI must be obtained before this software is used
## for commercial purposes. (Contact: [email protected])
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
## LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
import os
import argparse
import urllib.request
import re
import json
import functools
from multiprocessing import Pool
from common import conditionalMkdir
try:
from BeautifulSoup import BeautifulSoup
except ImportError:
from bs4 import BeautifulSoup
''' Finds all links to XPT files in source HTML '''
def parsePageXPT(html_source):
# Parse HTML source code with BeautifulSoup library
soup = BeautifulSoup(html_source, 'html.parser')
# Get all <a>...</a> with .XPT extensions
xpt_urls = soup.findAll('a', href=re.compile('\.XPT$'))
xpt_urls = [url['href'] for url in xpt_urls]
return xpt_urls
''' Parses a page for 'codebook' div with descriptions of column labels '''
def parsePageLabels(html_source):
# Parse HTML source code with BeautifulSoup library
soup = BeautifulSoup(html_source, 'html.parser')
# Find div element with codebook
try:
div = soup.findAll('div', id="CodebookLinks")[0]
except:
# If we can't find the div, print
print('Error, no CodebookLinks Div')
return {}
# Get all links and their text in the div
labels = [link.string.rstrip() for link in div.findAll('a')]
# Put labels into library
labels = [re.split('( - )', label, 1) for label in labels]
labels = {label[0]:label[-1] for label in labels}
return labels
'''Get year associated with file '''
def getFileYear(file_url):
# Search URL for a year
year = re.search('\/(\d+-\d+)\/', file_url)
# Get value from regular expression match
if year:
year = year.group(1)
else:
# If no match, assign year as 'Other'
year = 'Other'
return year
''' Creates directory for file and downloads file from provided URL '''
def getFile(file_dir, file_url, file_type):
# Get data year
year = getFileYear(file_url)
# Compile file location
file_dir = os.path.join(file_dir, year, file_type)
# Make directory for file if necessary
conditionalMkdir(file_dir)
# Get name for file
file_name = file_url.split('/')[-1]
file_loc = os.path.join(file_dir, file_name)
# Check that file does not already exist
if not os.path.isfile(file_loc):
print('Getting file: %s' % file_url)
# Download the file and write to local
urllib.request.urlretrieve(file_url, file_loc)
''' Obtains column labels from NHANES website and saves to JSON '''
def getLabel(file_dir, file_url, file_type):
# Get data year
year = getFileYear(file_url)
# Combile file location:
file_dir = os.path.join(file_dir, year, file_type)
# Get name for file
file_name = file_url.split('/')[-1].replace('.XPT', '.JSON')
file_loc = os.path.join(file_dir, file_name)
# Modify XPT file_url to load page with labels
file_url = file_url.replace('.XPT', '.htm')
# Check that file does not already exist
if not os.path.isfile(file_loc):
# Open the website and download source HTML
with urllib.request.urlopen(file_url) as page:
html_source = page.read()
# Parse the website for column label
file_labels = parsePageLabels(html_source)
# Save the file to JSON
print('Saving label data: %s' % file_loc)
with open(file_loc, 'w') as open_file:
json.dump(file_labels, open_file)
''' Reads HTML source from provided URLs, parses HTML for XPT files, and saves files '''
def parseWebSite(url, output_dir):
# Get base URL for appending to relative file URLs
base_url = 'http://' + url.lstrip('http://').split('/')[0]
# Get file type for this URL
file_type = re.search('Component=([a-zA-Z]+)', url)
if file_type:
file_type = file_type.group(1)
else:
file_type = 'Other'
# Open the website and download source HTML
with urllib.request.urlopen(url) as page:
html_source = page.read()
# Parse the website for .XPT file links
file_urls = parsePageXPT(html_source)
file_urls = [base_url + file_url for file_url in file_urls]
# Download each file and store locally
for file_url in file_urls:
getFile(output_dir, file_url, file_type)
getLabel(output_dir, file_url, file_type)
def main():
# Get text file with list of URLs for NHANES data
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output_dir', type=str,\
default='./data/raw_data/', help='Location for writing files')
parser.add_argument('-m', '--multithread', action='store_true',\
help='invoke multiprocessing python to parallelize downloads')
parser.add_argument('url_list', type=str, default='./NHANES_URLS.txt',\
nargs='?', help='text document containing URLs to NHANES\
website listing data files')
args = parser.parse_args()
# Make output directory if necessary
conditionalMkdir(args.output_dir)
# Get list of URLs
with open(args.url_list, 'r') as f:
urls = f.readlines()
# Parse each webpage
if args.multithread:
parallelParseWebSite = functools.partial(parseWebSite,\
output_dir=args.output_dir)
pool = Pool(processes=os.cpu_count())
pool.map(parallelParseWebSite, urls)
else:
for url in urls:
parseWebSite(url, args.output_dir)
if __name__ == '__main__':
main()