-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_EMA.py
207 lines (170 loc) · 9.34 KB
/
train_EMA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
from tqdm import tqdm
from copy import deepcopy
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import data_collate
import data_loader
from utils_data import plot_tensor, save_plot
from model.utils import fix_len_compatibility
from text.symbols import symbols
import utils_data as utils
class ModelEmaV2(torch.nn.Module):
def __init__(self, model, decay=0.9999, device=None):
super(ModelEmaV2, self).__init__()
self.model_state_dict = deepcopy(model.state_dict())
self.decay = decay
self.device = device # perform ema on different device from model if set
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(self.model_state_dict.values(), model.state_dict().values()):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def state_dict(self, destination=None, prefix='', keep_vars=False):
return self.model_state_dict
if __name__ == "__main__":
hps = utils.get_hparams()
logger_text = utils.get_logger(hps.model_dir)
logger_text.info(hps)
out_size = fix_len_compatibility(2 * hps.data.sampling_rate // hps.data.hop_length) # NOTE: 2-sec of mel-spec
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(hps.train.seed)
np.random.seed(hps.train.seed)
print('Initializing logger...')
log_dir = hps.model_dir
logger = SummaryWriter(log_dir=log_dir)
train_dataset, collate, model = utils.get_correct_class(hps)
test_dataset, _, _ = utils.get_correct_class(hps, train=False)
print('Initializing data loaders...')
batch_collate = collate
loader = DataLoader(dataset=train_dataset, batch_size=hps.train.batch_size,
collate_fn=batch_collate, drop_last=True,
num_workers=4, shuffle=False) # NOTE: if on server, worker can be 4
print('Initializing model...')
model = model(**hps.model).to(device)
print('Number of encoder + duration predictor parameters: %.2fm' % (model.encoder.nparams / 1e6))
print('Number of decoder parameters: %.2fm' % (model.decoder.nparams / 1e6))
print('Total parameters: %.2fm' % (model.nparams / 1e6))
use_gt_dur = getattr(hps.train, "use_gt_dur", False)
if use_gt_dur:
print("++++++++++++++> Using ground truth duration for training")
print('Initializing optimizer...')
optimizer = torch.optim.Adam(params=model.parameters(), lr=hps.train.learning_rate)
print('Logging test batch...')
test_batch = test_dataset.sample_test_batch(size=hps.train.test_size)
for i, item in enumerate(test_batch):
mel = item['mel']
logger.add_image(f'image_{i}/ground_truth', plot_tensor(mel.squeeze()),
global_step=0, dataformats='HWC')
save_plot(mel.squeeze(), f'{log_dir}/original_{i}.png')
try:
model, optimizer, learning_rate, epoch_logged = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "grad_*.pt"), model, optimizer)
epoch_start = epoch_logged + 1
print(f"Loaded checkpoint from {epoch_logged} epoch, resuming training.")
global_step = epoch_logged * (len(train_dataset)/hps.train.batch_size)
except:
print(f"Cannot find trained checkpoint, begin to train from scratch")
epoch_start = 1
global_step = 0
learning_rate = hps.train.learning_rate
ema_model = ModelEmaV2(model, decay=0.9999) # It's necessary that we put this after loading model.
print('Start training...')
used_items = set()
iteration = global_step
for epoch in range(epoch_start, hps.train.n_epochs + 1):
model.train()
dur_losses = []
prior_losses = []
diff_losses = []
with tqdm(loader, total=len(train_dataset) // hps.train.batch_size) as progress_bar:
for batch_idx, batch in enumerate(progress_bar):
model.zero_grad()
x, x_lengths = batch['text_padded'].to(device), \
batch['input_lengths'].to(device)
y, y_lengths = batch['mel_padded'].to(device), \
batch['output_lengths'].to(device)
if hps.xvector:
spk = batch['xvector'].to(device)
else:
spk = batch['spk_ids'].to(torch.long).to(device)
emo = batch['emo_ids'].to(torch.long).to(device)
dur_loss, prior_loss, diff_loss = model.compute_loss(x, x_lengths,
y, y_lengths,
spk=spk,
emo=emo,
out_size=out_size,
use_gt_dur=use_gt_dur,
durs=batch['dur_padded'].to(device) if use_gt_dur else None)
loss = sum([dur_loss, prior_loss, diff_loss])
loss.backward()
enc_grad_norm = torch.nn.utils.clip_grad_norm_(model.encoder.parameters(),
max_norm=1)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(model.decoder.parameters(),
max_norm=1)
optimizer.step()
ema_model.update(model)
logger.add_scalar('training/duration_loss', dur_loss.item(),
global_step=iteration)
logger.add_scalar('training/prior_loss', prior_loss.item(),
global_step=iteration)
logger.add_scalar('training/diffusion_loss', diff_loss.item(),
global_step=iteration)
logger.add_scalar('training/encoder_grad_norm', enc_grad_norm,
global_step=iteration)
logger.add_scalar('training/decoder_grad_norm', dec_grad_norm,
global_step=iteration)
dur_losses.append(dur_loss.item())
prior_losses.append(prior_loss.item())
diff_losses.append(diff_loss.item())
if batch_idx % 5 == 0:
msg = f'Epoch: {epoch}, iteration: {iteration} | dur_loss: {dur_loss.item()}, prior_loss: {prior_loss.item()}, diff_loss: {diff_loss.item()}'
progress_bar.set_description(msg)
iteration += 1
log_msg = 'Epoch %d: duration loss = %.3f ' % (epoch, float(np.mean(dur_losses)))
log_msg += '| prior loss = %.3f ' % np.mean(prior_losses)
log_msg += '| diffusion loss = %.3f\n' % np.mean(diff_losses)
with open(f'{log_dir}/train.log', 'a') as f:
f.write(log_msg)
if epoch % hps.train.save_every > 0:
continue
model.eval()
print('Synthesis...')
with torch.no_grad():
for i, item in enumerate(test_batch):
if item['utt'] + "/truth" not in used_items:
used_items.add(item['utt'] + "/truth")
x = item['text'].to(torch.long).unsqueeze(0).to(device)
if not hps.xvector:
spk = item['spk_ids']
spk = torch.LongTensor([spk]).to(device)
else:
spk = item["xvector"]
spk = spk.unsqueeze(0).to(device)
emo = item['emo_ids']
emo = torch.LongTensor([emo]).to(device)
x_lengths = torch.LongTensor([x.shape[-1]]).to(device)
y_enc, y_dec, attn = model(x, x_lengths, spk=spk, emo=emo, n_timesteps=10)
logger.add_image(f'image_{i}/generated_enc',
plot_tensor(y_enc.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/generated_dec',
plot_tensor(y_dec.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/alignment',
plot_tensor(attn.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
save_plot(y_enc.squeeze().cpu(),
f'{log_dir}/generated_enc_{i}.png')
save_plot(y_dec.squeeze().cpu(),
f'{log_dir}/generated_dec_{i}.png')
save_plot(attn.squeeze().cpu(),
f'{log_dir}/alignment_{i}.png')
ckpt = model.state_dict()
utils.save_checkpoint(ema_model, optimizer, learning_rate, epoch, checkpoint_path=f"{log_dir}/EMA_grad_{epoch}.pt")
utils.save_checkpoint(model, optimizer, learning_rate, epoch, checkpoint_path=f"{log_dir}/grad_{epoch}.pt")