Skip to content

Latest commit

 

History

History
70 lines (46 loc) · 2.87 KB

README.md

File metadata and controls

70 lines (46 loc) · 2.87 KB

RobotFingerPrint

RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis​

Ninad Khargonkar, Luis Felipe Casas, Balakrishnan Prabhakaran, Yu Xiang

Paper (arXiv) | Video | Project website

Multi embodiment generalizable grasping method across grippers with different number of fingers.

Setup

  • The overall flow and evaluation setup is adapted from GenDexGrasp.
  • Set a symbolic link to GenDexGrasp dataset under ./dataset/GenDexGrasp/
    • Check the associated data files README from here
    • The above folder will also have the training and inference log files for reference
  • Create conda python env via the envrionment.yml

Note

This repo includes self-contained src code for the maximal spheres for grippers and testing grasps in isaacgym. Please check their individual folders for reference and setup:

For grasp simulation test based on GenDexGrasp, see: grasp-test-isaacgym/

For computing maximal spheres for gripper, see: grasp-maximal-sphere/

Sphere Grasping example:

RFP Scripts

  • Training: python gdx_train_gcs.py

    • Args used: --n_epochs 16 --ann_temp 1.5 --ann_per_epochs 2
    • Optionally, for unseen gripper models: use the --disable_[GripperName] flage (example: --disable_shadowhand).
    • See --help for more details
  • Coordinate Map Inference: gcs_gdx_inf_cvae.py

    • Use the desired log dir generated by the training script with --logdir
    • Use the desited checkpoint name with --ckpt (e.g. best_val.pt, or latest.pt)
    • Other args used: --num_per_unseen_object 64
    • See --help for more details
  • Grasp Generation for target gripper: gcs_gdx_grasp_gen.py

    • --logdir, --inf_dir: Point to the logging and dir where the inference maps are stored
    • --max_iter: we used 100 steps
    • See --help for more details
  • Grasp Evaluation:

    • We used the GenDexGrasp isaac gym evaluation setup with learning_rate=0.1 and step_size=0.02 for the grasp evaluation params for each gripper (inside the env script, under _set_normal_force_pose() method).
    • See the grasp-test-isaacgym self-contained folder for more details.

Generated grasp example after the grasp optimzation process:

Citing RFP

@inproceedings{khargonkar2024robotfingerprint,
title={RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis​},
author={Khargonkar, Ninad and Casas, Luis Felipe and  and Prabhakaran, Balakrishnan and Xiang, Yu},
journal={arXiv preprint arXiv:2409.14519},
year={2024}
}