-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsigscan.py
433 lines (382 loc) · 15.3 KB
/
sigscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import argparse
import base64
import configparser
import json
import logging
import sys
import threading
from datetime import datetime
from io import BytesIO
from timeit import default_timer as timer
import matplotlib.pyplot as plt
import numpy as np
import paho.mqtt.client as mqtt
import torch
from flask import Flask
import birdseye.dqn
import birdseye.env
import birdseye.mcts_utils
import birdseye.sensor
import birdseye.state
import birdseye.utils
from birdseye.actions import WalkingActions
from birdseye.planner import DQNPlanner
from birdseye.planner import MCTSPlanner
from birdseye.utils import get_heading
from birdseye.utils import get_distance
from birdseye.utils import is_float
logging.basicConfig(level=10, format="%(asctime)s %(message)s")
logging.getLogger("matplotlib.font_manager").disabled = True
class GamutRFSensor(birdseye.sensor.SingleRSSI):
"""
GamutRF Sensor
"""
def __init__(
self,
antenna_filename=None,
power_tx=26,
directivity_tx=1,
freq=5.7e9,
fading_sigma=None,
threshold=-120,
data={},
):
super().__init__(
antenna_filename=antenna_filename,
power_tx=power_tx,
directivity_tx=directivity_tx,
freq=freq,
fading_sigma=fading_sigma,
)
self.threshold = threshold
self.data = data
def real_observation(self):
if (self.data.get("rssi", None)) is None or (
self.data["rssi"] < self.threshold
):
return None
return self.data["rssi"]
class SigScan:
def __init__(self, config_path="sigscan_config.ini"):
self.data = {
"rssi": None,
"position": None,
"distance": None,
"previous_position": None,
"heading": None,
"previous_heading": None,
"course": None,
"action_proposal": None,
"action_taken": None,
"reward": None,
}
config = configparser.ConfigParser()
config.read(config_path)
self.config = config["sigscan"]
self.config_path = config_path
self.static_position = None
self.static_heading = None
def data_handler(self, message_data):
"""
Generic data processor
"""
if self.static_position:
message_data["position"] = self.static_position
if self.static_heading is not None:
message_data["heading"] = self.static_heading
self.data["previous_position"] = (
self.data.get("position", None)
if not self.data.get("needs_processing", True)
else self.data.get("previous_position", None)
)
self.data["previous_heading"] = (
self.data.get("heading", None)
if not self.data.get("needs_processing", True)
else self.data.get("previous_heading", None)
)
self.data["rssi"] = message_data.get("rssi", None)
self.data["position"] = message_data.get("position", self.data["position"])
self.data["course"] = get_heading(
self.data["previous_position"], self.data["position"]
)
self.data["heading"] = (
-float(message_data.get("heading", None)) + 90
if is_float(message_data.get("heading", None))
else self.data["course"]
)
self.data["distance"] = get_distance(
self.data["previous_position"], self.data["position"]
)
delta_heading = (
(self.data["heading"] - self.data["previous_heading"])
if self.data["heading"] and self.data["previous_heading"]
else None
)
self.data["action_taken"] = (
(delta_heading, self.data["distance"])
if delta_heading and self.data["distance"]
else (0, 0)
)
self.data["drone_position"] = message_data.get("drone_position", None)
if self.data["drone_position"]:
self.data["drone_position"] = [
self.data["drone_position"][1],
self.data["drone_position"][0],
] # swap lon,lat
self.data["needs_processing"] = True
def on_message(self, client, userdata, json_message):
"""
Get MQTT messages
"""
json_data = json.loads(json_message.payload)
self.data_handler(json_data)
def on_connect(self, client, userdata, flags, result_code):
"""
Subscribe to MQTT channel
"""
sub_channel = "gamutrf/rssi"
logging.info(
"Connected to %s with result code %s", sub_channel, str(result_code)
)
client.subscribe(sub_channel)
def run_flask(self, flask_host, flask_port, fig, results):
"""
Flask
"""
app = Flask(__name__)
@app.route("/")
def hello():
# Save figure to a temporary buffer.
flask_start_time = timer()
buf = BytesIO()
try:
fig.savefig(buf, format="png", bbox_inches="tight")
except ValueError:
return '<html><head><meta http-equiv="refresh" content="1"></head><body><p>No image, refreshing...</p></body></html>'
# Embed the result in the html output.
data = base64.b64encode(buf.getvalue()).decode("ascii")
flask_end_time = timer()
logging.debug("=======================================")
logging.debug("Flask Timing")
logging.debug("time step = %s", str(results.time_step))
logging.debug("buffer size = {:.2f} MB".format(len(buf.getbuffer()) / 1e6))
logging.debug(
"Duration = {:.4f} s".format(flask_end_time - flask_start_time)
)
logging.debug("=======================================")
return f'<html><head><meta http-equiv="refresh" content="0.5"></head><body><img src="data:image/png;base64,{data}"/></body></html>'
host_name = flask_host
port = flask_port
threading.Thread(
target=lambda: app.run(
host=host_name, port=port, debug=False, use_reloader=False
)
).start()
def main(self):
"""
Main loop
"""
static_position = self.config.get("static_position", None)
if static_position:
static_position = [float(i) for i in static_position.split(",")]
self.static_position = static_position
static_heading = self.config.get("static_heading", None)
if static_heading is not None:
static_heading = float(static_heading)
self.static_heading = static_heading
replay_file = self.config.get("replay_file", None)
mqtt_host = self.config.get("mqtt_host", "localhost")
mqtt_port = int(self.config.get("mqtt_port", str(1883)))
flask_host = self.config.get("flask_host", "127.0.0.1")
flask_port = int(self.config.get("flask_port", str(4999)))
n_antennas = int(self.config.get("n_antennas", str(1)))
antenna_type = self.config.get("antenna_type", "omni")
planner_method = self.config.get("planner_method", "dqn")
power_tx = float(self.config.get("power_tx", str(26)))
directivity_tx = float(self.config.get("directivity_tx", str(1)))
freq = float(self.config.get("freq", str(5.7e9)))
fading_sigma = float(self.config.get("fading_sigma", str(8)))
threshold = float(self.config.get("threshold", str(-120)))
reward_func = self.config.get("reward", "heuristic_reward")
n_targets = int(self.config.get("n_targets", str(2)))
particle_distance = float(self.config.get("particle_distance", str(200)))
dqn_checkpoint = self.config.get("dqn_checkpoint", None)
max_iterations = int(self.config.get("max_iterations", str(0)))
if planner_method in ["dqn", "DQN"] and dqn_checkpoint is None:
if n_antennas == 1 and antenna_type == "directional" and n_targets == 2:
dqn_checkpoint = (
"checkpoints/single_directional_entropy_walking.checkpoint"
)
elif n_antennas == 1 and antenna_type == "omni":
dqn_checkpoint = "checkpoints/single_omni_entropy_walking.checkpoint"
elif n_antennas == 2 and antenna_type == "directional" and n_targets == 2:
dqn_checkpoint = (
"checkpoints/double_directional_entropy_walking.checkpoint"
)
elif n_antennas == 2 and antenna_type == "directional" and n_targets == 1:
dqn_checkpoint = (
"checkpoints/double_directional_entropy_walking_1target.checkpoint"
)
elif n_antennas == 1 and antenna_type == "directional" and n_targets == 1:
dqn_checkpoint = (
"checkpoints/single_directional_entropy_walking_1target.checkpoint"
)
# MQTT
if replay_file is None:
try:
client = mqtt.Client()
client.on_connect = self.on_connect
client.on_message = self.on_message
client.connect(mqtt_host, mqtt_port, 60)
client.loop_start()
except Exception as err:
logging.error(
"Unable to connect to MQTT host %s:%s because: %s.",
mqtt_host,
str(mqtt_port),
str(err),
)
sys.exit(1)
else:
with open(replay_file, "r", encoding="UTF-8") as open_file:
replay_data = json.load(open_file)
replay_ts = sorted(replay_data.keys())
# BirdsEye
global_start_time = datetime.utcnow().timestamp()
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
) # pylint: disable=no-member
results = birdseye.utils.Results(
experiment_name=self.config_path,
global_start_time=global_start_time,
config=self.config,
)
# Sensor
if antenna_type in ["directional", "yagi", "logp"]:
antenna_filename = "radiation_pattern_yagi_5.csv"
elif antenna_type in ["omni", "omnidirectional"]:
antenna_filename = "radiation_pattern_monopole.csv"
sensor = GamutRFSensor(
antenna_filename=antenna_filename,
power_tx=power_tx,
directivity_tx=directivity_tx,
freq=freq,
fading_sigma=fading_sigma,
threshold=threshold,
data=self.data,
) # fading sigm = 8dB, threshold = -120dB
# Action space
actions = WalkingActions()
actions.print_action_info()
# State managment
state = birdseye.state.RFMultiState(
n_targets=n_targets,
reward=reward_func,
simulated=False,
particle_distance=particle_distance,
)
# Environment
env = birdseye.env.RFMultiEnv(
sensor=sensor, actions=actions, state=state, simulated=False
)
belief = env.reset()
# Motion planner
if self.config.get("use_planner", "false").lower() != "true":
planner = None
elif planner_method in ["dqn", "DQN"]:
planner = DQNPlanner(env, actions, device, dqn_checkpoint)
elif planner_method in ["mcts", "MCTS"]:
depth = 2
c = 20
simulations = 50
planner = MCTSPlanner(env, actions, depth, c, simulations)
else:
raise ValueError("planner_method not valid")
# Flask
fig = plt.figure(figsize=(18, 10), dpi=50)
ax = fig.subplots()
fig.set_layout_engine("tight")
time_step = 0
if self.config.get("flask", "false").lower() == "true":
self.run_flask(flask_host, flask_port, fig, results)
# Main loop
while True:
if max_iterations > 0 and max_iterations <= time_step:
break
loop_start = timer()
self.data["utc_time"] = datetime.utcnow().timestamp()
time_step += 1
if replay_file is not None:
# load data from saved file
if time_step - 1 == len(replay_ts):
break
self.data_handler(replay_data[replay_ts[time_step - 1]])
action_start = timer()
self.data["action_proposal"] = (
planner.proposal(belief) if planner else [None, None]
)
action_end = timer()
step_start = timer()
# update belief based on action and sensor observation (sensor is read inside)
if self.data.get("needs_processing", False):
belief, reward, observation = env.real_step(self.data)
self.data["reward"] = reward
self.data["needs_processing"] = False
step_end = timer()
plot_start = timer()
results.live_plot(
env=env,
time_step=time_step,
fig=fig,
ax=ax,
data=self.data,
sidebar=True,
map_distance=particle_distance,
)
plot_end = timer()
particle_save_start = timer()
np.save(
f'{results.logdir}/{self.data["utc_time"]}_particles.npy',
env.pf.particles,
)
particle_save_end = timer()
data_start = timer()
with open(
f"{results.logdir}/birdseye-{global_start_time}.log",
"a",
encoding="UTF-8",
) as outfile:
json.dump(self.data, outfile)
outfile.write("\n")
data_end = timer()
loop_end = timer()
logging.debug("=======================================")
logging.debug("BirdsEye Timing")
logging.debug("time step = {}".format(time_step))
logging.debug(
"action selection = {:.4f} s".format(action_end - action_start)
)
logging.debug("env step = {:.4f} s".format(step_end - step_start))
logging.debug("plot = {:.4f} s".format(plot_end - plot_start))
logging.debug(
"particle save = {:.4f} s".format(
particle_save_end - particle_save_start
)
)
logging.debug("data save = {:.4f} s".format(data_end - data_start))
logging.debug("main loop = {:.4f} s".format(loop_end - loop_start))
logging.debug("=======================================")
if self.config.get("make_gif", "false").lower() == "true":
results.save_gif("tracking")
if __name__ == "__main__": # pragma: no cover
parser = argparse.ArgumentParser()
parser.add_argument("config_path")
parser.add_argument("--log", default="INFO")
args = parser.parse_args()
numeric_level = getattr(logging, args.log.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError("Invalid log level: %s" % args.log)
logging.basicConfig(level=numeric_level, format="[%(asctime)s] %(message)s")
logging.getLogger("matplotlib.font_manager").disabled = True
instance = SigScan(config_path=args.config_path)
instance.main()