forked from IGITUGraz/eligibility_propagation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumerical_verification_eprop_hardcoded_vs_autodiff.py
163 lines (136 loc) · 6.52 KB
/
numerical_verification_eprop_hardcoded_vs_autodiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2020, the e-prop team
# Full paper: A solution to the learning dilemma for recurrent networks of spiking neurons
# Authors: G Bellec*, F Scherr*, A Subramoney, E Hajek, Darjan Salaj, R Legenstein, W Maass
#
# In this script we verify that the computation of symmetric e-prop derived in the paper
# equal to what we compute the auto-diff version of e-prop.
#
# This numerical verification relies on a single script structured as follows:
# 1. Let's define some parameters
# 2. Define the network model and the inputs
# 3. We simulate the network.
# 4. Define the learning signal with equation (4) for an arbitrary loss function
# 5. Compute the gradients following the online definition of eligibility traces for ALIF equation (25)
# 6. Compute the gradients with auto-diff (with the cell parameter "stop_gradient=True" it leads to e-prop)
# 7. Start the tensorflow session to run the computation
#
# The relative difference between the two resulting gradients dE/dW_ij are approximately 10^-14.
# This tiny difference is the expected machine precision for two different computation schemes of the same gradient.
#
# This script requires was tested with tensorflow 1.15 and python3.6.
# More details requirements are explained in the folder Figure_3_and_S7_...
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from Figure_3_and_S7_e_prop_tutorials.models import EligALIF, exp_convolve, shift_by_one_time_step
from Figure_3_and_S7_e_prop_tutorials.tools import raster_plot
# 1. Let's define some parameters
n_in = 3
n_LIF = 4
n_ALIF = 4
n_rec = n_ALIF + n_LIF
dt = 1 # ms
tau_v = 20 # ms
tau_a = 500 # ms
T = 10 # ms
f0 = 100 # Hz
thr = 0.62
beta = 0.07 * np.concatenate([np.zeros(n_LIF), np.ones(n_ALIF)])
dampening_factor = 0.3
n_ref = 3
# 2. Define the network model and the inputs
cell = EligALIF(n_in=n_in, n_rec=n_LIF + n_ALIF, tau=tau_v, beta=beta, thr=thr,
dt=dt, tau_adaptation=tau_a, dampening_factor=dampening_factor,
stop_z_gradients=True, # This option makes it possible to blindly compute e-prop with auto-diff.
n_refractory=n_ref)
# Define an arbitrary input, here some poisson spike train.
inputs = tf.random_uniform(shape=[1, T, n_in]) < f0 * dt / 1000
inputs = tf.cast(inputs, tf.float32)
# 3. We simulate the network.
spikes = []
voltages = []
thr_variations = []
state = cell.zero_state(1, tf.float32, n_rec=n_rec)
for t in range(T):
outs, state = cell(inputs[:, t], state)
spikes_t, hidden_states_t = outs
spikes.append(spikes_t)
voltages.append(hidden_states_t[..., 0])
thr_variations.append(hidden_states_t[..., 1])
# Stack the lists as tensors (second dimension is time)
# - spikes and learning signals will have shape: [n_batch, n_time , n_neuron]
# - eligibility traces will have shape: [n_batch, n_time , n_neuron, n_neuron]
spikes = tf.stack(spikes, axis=1)
voltages = tf.stack(voltages, axis=1)
thr_variations = tf.stack(thr_variations, axis=1)
# 4. Define the learning signal with eqution (4) for an arbitrary loss function
# (here regression with a random target)
w_out = tf.random_normal(shape=[n_rec, 1])
decay_out = tf.exp(-1 / 20)
z_filtered = exp_convolve(spikes, decay_out)
y_out = tf.einsum("btj,jk->btk", z_filtered, w_out)
y_target = tf.random_normal(shape=[1, T, 1])
loss = 0.5 * tf.reduce_sum((y_out - y_target) ** 2)
# This defines the true learning signal as in equation (4)
# Einsum performs a tensor multiplication with more flexibility on the combination of indices.
learning_signals = tf.einsum("btk,jk->btj", y_out - y_target, w_out)
# 5. Compute the gradients with cell.compute_loss_gradient(...),
# following the online definition of eligibility traces for ALIF equation (25)
# the gradients with e-prop are computed with equation (1) of the paper
pre_synpatic_spike_one_step_before = shift_by_one_time_step(spikes)
gradients_eprop, eligibility_traces, _, _ = \
cell.compute_loss_gradient(learning_signals, pre_synpatic_spike_one_step_before, spikes, voltages,
thr_variations, decay_out, True)
# 6. Compute the gradients with BPTT as a ground truth
gradients_BPTT = tf.gradients(loss, cell.w_rec_var)[0]
# 7. Start the tensorflow session to run the computation
# (until now we only built a computational graph, no simulation has been performed)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tf_tensors = {'inputs': inputs,
'spikes': spikes,
'gradients_eprop': gradients_eprop,
'gradients_autodiff': gradients_autodiff,
'eligibility_traces': eligibility_traces,
'y_out': y_out,
'y_target': y_target,
'learning_signals': learning_signals}
np_tensors = sess.run(tf_tensors)
# Show the gradients
fig, ax_list = plt.subplots(1, 2)
ax_list[0].imshow(np_tensors['gradients_eprop'])
ax_list[0].set_title("Gradient dE/dW_ji with e-prop")
ax_list[1].imshow(np_tensors['gradients_autodiff'])
ax_list[1].set_title("Gradient dE/dW_ji with autodiff")
# Compute the relative error:
g_e_prop = np_tensors['gradients_eprop']
g_bptt = np_tensors['gradients_autodiff']
M = np.max(np.abs(g_bptt))
print("Max abs value of the true gradient: ", M)
assert (not np.any(np.isnan(g_bptt)), "The auto-diff has NaN coeffs, this not a very interesting verification.")
assert M != 0, "The auto-diff gradient is zero, this not a very interesting verification."
g_e_prop /= M
g_bptt /= M
gradient_errors = (g_e_prop - g_bptt) ** 2
max_gradient_errors = np.max(gradient_errors)
print("Gradients computed with symmetric e-prop:")
print(np.array_str(np_tensors['gradients_eprop'], precision=5, suppress_small=True))
print("Gradients computed with autodiff (and \"stop_gradient=True\"):")
print(np.array_str(np_tensors['gradients_autodiff'], precision=5, suppress_small=True))
print("Maximum element wise errors: {}".format(max_gradient_errors))
# Some plots to visualize what is happening.
fig, ax_list = plt.subplots(4, figsize=(8, 12), sharex=True)
raster_plot(ax_list[0], np_tensors['inputs'][0])
ax_list[0].set_ylabel("Input spikes")
raster_plot(ax_list[1], np_tensors['spikes'][0])
ax_list[1].set_ylabel("Spikes")
v_max = np.max(np.abs(np_tensors['learning_signals']))
ax_list[2].pcolor(np.arange(T), np.arange(n_rec), np_tensors['learning_signals'][0].T, cmap='seismic', vmin=-1, vmax=1)
ax_list[2].set_ylabel("Learning signals")
for i in range(3):
for j in range(3):
if i != j:
ax_list[3].plot(np.arange(T), np_tensors['eligibility_traces'][0, :, i, j])
ax_list[3].set_ylabel("Eligibility traces")
ax_list[3].set_xlabel("time in ms")
plt.show()