diff --git a/scripts/mark_points_to_use_for_digital_models_with_new_dimension.py b/scripts/mark_points_to_use_for_digital_models_with_new_dimension.py index 819c252..669ae55 100755 --- a/scripts/mark_points_to_use_for_digital_models_with_new_dimension.py +++ b/scripts/mark_points_to_use_for_digital_models_with_new_dimension.py @@ -15,7 +15,7 @@ def parse_args(): "Tool to apply pdal pipelines to select points for DSM and DTM calculation" + "(add dimensions with positive values for the selected points)" ) - parser.add_argument("--input", "-i", type=str, required=True, help="Input las file") + parser.add_argument("--input_las", "-i", type=str, required=True, help="Input las file") parser.add_argument( "--output_las", "-o", type=str, required=True, help="Output cloud las file" ) @@ -42,18 +42,11 @@ def parse_args(): return parser.parse_args() -if __name__ == "__main__": - args = parse_args() - - pipeline = pdal.Pipeline() | pdal.Reader.las(args.input) - dsm_dim = args.dsm_dimension - dtm_dim = args.dtm_dimension - - # Récupération des dimensions du fichier en entrée - input_dimensions = pipeline.quickinfo["readers.las"]["dimensions"].split(", ") +def main(input_las, output_las, dsm_dimension, dtm_dimension, output_dsm, output_dtm): + pipeline = pdal.Pipeline() | pdal.Reader.las(input_las) # 0 - ajout de dimensions temporaires et de sortie - added_dimensions = [dtm_dim, dsm_dim, "PT_VEG_DSM", "PT_ON_BRIDGE"] + added_dimensions = [dtm_dimension, dsm_dimension, "PT_VEG_DSM", "PT_ON_BRIDGE"] pipeline |= pdal.Filter.ferry(dimensions="=>" + ", =>".join(added_dimensions)) # 1 - recherche des points max de végétation (4,5) sur une grille régulière, avec prise en @@ -95,22 +88,24 @@ def parse_args(): # max des points de veget (PT_VEG_DSM==1) sur une grille régulière : pipeline |= pdal.Filter.gridDecimation( - resolution=0.75, value=f"{dsm_dim}=1", output_type="max", where="PT_VEG_DSM==1" + resolution=0.75, value=f"{dsm_dimension}=1", output_type="max", where="PT_VEG_DSM==1" ) # 2 - sélection des points pour DTM et DSM # selection de points DTM (max) sur une grille régulière pipeline |= pdal.Filter.gridDecimation( - resolution=0.5, value=f"{dtm_dim}=1", output_type="max", where="Classification==2" + resolution=0.5, value=f"{dtm_dimension}=1", output_type="max", where="Classification==2" ) # selection de points DSM (max) sur une grille régulière pipeline |= pdal.Filter.gridDecimation( resolution=0.5, - value=f"{dsm_dim}=1", + value=f"{dsm_dimension}=1", output_type="max", - where="(" + macro.build_condition("Classification", [6, 9, 17, 64]) + f") || {dsm_dim}==1", + where="(" + + macro.build_condition("Classification", [6, 9, 17, 64]) + + f") || {dsm_dimension}==1", ) # assigne des points sol sélectionnés : les points proches de la végétation, des ponts, de l'eau, 64 @@ -118,9 +113,9 @@ def parse_args(): pipeline, 1.5, False, - condition_src=f"{dtm_dim}==1", + condition_src=f"{dtm_dimension}==1", condition_ref=macro.build_condition("Classification", [4, 5, 6, 9, 17, 64]), - condition_out=f"{dsm_dim}=1", + condition_out=f"{dsm_dimension}=1", ) # 3 - gestion des ponts @@ -145,32 +140,37 @@ def parse_args(): condition_ref=macro.build_condition("Classification", [2, 3, 4, 5]), condition_out="PT_ON_BRIDGE=0", ) - pipeline |= pdal.Filter.assign(value=[f"{dsm_dim}=0 WHERE PT_ON_BRIDGE==1"]) + pipeline |= pdal.Filter.assign(value=[f"{dsm_dimension}=0 WHERE PT_ON_BRIDGE==1"]) # 4 - point pour DTM servent au DSM également - pipeline |= pdal.Filter.assign(value=[f"{dsm_dim}=1 WHERE {dtm_dim}==1"]) + pipeline |= pdal.Filter.assign(value=[f"{dsm_dimension}=1 WHERE {dtm_dimension}==1"]) # 5 - export du nuage et des DSM # TODO: n'ajouter que les dimensions de sortie utiles ! - pipeline |= pdal.Writer.las(extra_dims="all", forward="all", filename=args.output_las) + pipeline |= pdal.Writer.las(extra_dims="all", forward="all", filename=output_las) - if args.output_dtm: + if output_dtm: pipeline |= pdal.Writer.gdal( gdaldriver="GTiff", output_type="max", resolution=2.0, - filename=args.output_dtm, - where=f"{dtm_dim}==1", + filename=output_dtm, + where=f"{dtm_dimension}==1", ) - if args.output_dsm: + if output_dsm: pipeline |= pdal.Writer.gdal( gdaldriver="GTiff", output_type="max", resolution=2.0, - filename=args.output_dsm, - where=f"{dsm_dim}==1", + filename=output_dsm, + where=f"{dsm_dimension}==1", ) pipeline.execute() + + +if __name__ == "__main__": + args = parse_args() + main(**args) diff --git a/test/scripts/test_mark_points_to_use_for_digital_models_with_new_dimension.py b/test/scripts/test_mark_points_to_use_for_digital_models_with_new_dimension.py new file mode 100644 index 0000000..570d247 --- /dev/null +++ b/test/scripts/test_mark_points_to_use_for_digital_models_with_new_dimension.py @@ -0,0 +1,23 @@ +import tempfile + +import numpy as np +import pdal + +from scripts.mark_points_to_use_for_digital_models_with_new_dimension import main + + +def test_main(): + ini_las = "test/data/4_6.las" + dsm_dimension = "dsm_marker" + dtm_dimension = "dtm_marker" + with tempfile.NamedTemporaryFile(suffix="_mark_points_output.las") as las_output: + main(ini_las, las_output.name, dsm_dimension, dtm_dimension, "", "") + pipeline = pdal.Pipeline() + pipeline |= pdal.Reader.las(las_output.name) + assert dsm_dimension in pipeline.quickinfo["readers.las"]["dimensions"].split(", ") + assert dtm_dimension in pipeline.quickinfo["readers.las"]["dimensions"].split(", ") + + pipeline.execute() + arr = pipeline.arrays[0] + assert np.any(arr[dsm_dimension] == 1) + assert np.any(arr[dtm_dimension] == 1)