From e0dcaf57ada0557a86a16dbd9c3d9d9e049ce55b Mon Sep 17 00:00:00 2001 From: lilyclements Date: Wed, 20 Nov 2024 13:08:52 +0000 Subject: [PATCH 1/2] adding summary_functions.R functions to data_sheet.R --- R/data_sheet.R | 172 +++++++++++++++++++++++++++++++++++++++++++++++ man/DataSheet.Rd | 85 ++++++++++++++++++++++- 2 files changed, 255 insertions(+), 2 deletions(-) diff --git a/R/data_sheet.R b/R/data_sheet.R index fcbd6ac..b4372cc 100644 --- a/R/data_sheet.R +++ b/R/data_sheet.R @@ -188,6 +188,10 @@ #' #' # related to calculation.R file in R-Instat #' \item{\code{save_calculation(calc)}}{Save a Calculation to the DataSheet.} +#' +#' # related to summary_functions.R file in R-Instat +#' \item{\code{merge_data(new_data, by = NULL, type = "left", match = "all")}{Merge New Data with Existing Data}} +#' \item{\code{calculate_summary(calc, ...)}{Calculate Summaries for Specified Columns}} #' } #' #' @section Active bindings: @@ -5174,6 +5178,174 @@ DataSheet <- R6::R6Class( return(calc$name) }, + #' Merge New Data with Existing Data + #' @description This method merges a new data frame with the existing data in the `DataSheet` object. + #' It supports multiple types of joins (left, right, inner, full) and ensures that the + #' data types of the columns used for merging are aligned. + #' + #' @param new_data A data frame containing the new data to merge with the existing data. + #' @param by A character vector specifying the columns to join by. If `NULL`, the function + #' will attempt to join by all columns with matching names. + #' @param type A string specifying the type of join. Options are: + #' - `"left"`: Keeps all rows from the existing data. + #' - `"right"`: Keeps all rows from the new data. + #' - `"full"`: Keeps all rows from both data frames. + #' - `"inner"`: Keeps only rows that match in both data frames. + #' @param match Reserved for future use. Currently not implemented. + #' @return None. The merged data is stored internally in the `DataSheet` object. + #' @details + #' - The method ensures that the data types of the columns specified in `by` are aligned + #' (e.g., converting factors to numeric if necessary). + #' - Metadata from the original data is preserved and updated after the merge. + #' - Column attributes for the `by` columns are restored after the merge. + merge_data = function(new_data, by = NULL, type = "left", match = "all") { + #TODO how to use match argument with dplyr join functions + old_metadata <- attributes(private$data) + curr_data <- self$get_data_frame(use_current_filter = FALSE) + by_col_attributes <- list() + + if (!is.null(by)) { + for (i in seq_along(by)) { + # Collect column attributes + by_col_attributes[[by[[i]]]] <- get_column_attributes(curr_data[[by[[i]]]]) + + # Check and align the data types for each "by" column + if (!inherits(curr_data[[by[[i]]]], class(new_data[[by[[i]]]]))) { + warning(paste0("Type is different for ", by[[i]], " in the two data frames. Setting as numeric in both data frames.")) + + # Convert factors to numeric if necessary + if (inherits(curr_data[[by[[i]]]], "factor")) { + curr_data[[by[[i]]]] <- as.numeric(as.character(curr_data[[by[[i]]]])) + } else if (inherits(new_data[[by[[i]]]], "factor")) { + new_data[[by[[i]]]] <- as.numeric(as.character(new_data[[by[[i]]]])) + } else { + stop(paste0("Type is different for ", by[[i]], " in the two data frames and cannot be coerced.")) + } + } + } + } + + + # Perform the appropriate join based on the "type" argument + if (type == "left") { + new_data <- dplyr::left_join(curr_data, new_data, by = by) + } else if (type == "right") { + new_data <- dplyr::right_join(curr_data, new_data, by = by) + } else if (type == "full") { + new_data <- dplyr::full_join(curr_data, new_data, by = by) + } else if (type == "inner") { + new_data <- dplyr::inner_join(curr_data, new_data, by = by) + } else { + stop("type must be one of left, right, inner, or full") + } + + # Update the data in the object + self$set_data(new_data) + self$append_to_changes("Merged_data") + + # Restore the old metadata + for (name in names(old_metadata)) { + if (!name %in% c("names", "class", "row.names")) { + self$append_to_metadata(name, old_metadata[[name]]) + } + } + + self$append_to_metadata("is_calculated_label", TRUE) + self$add_defaults_meta() + self$add_defaults_variables_metadata(setdiff(names(new_data), names(curr_data))) + + # Add back column attributes for the "by" columns + if (!is.null(by)) { + for (i in seq_along(by_col_attributes)) { + self$append_column_attributes(col_name = by[[i]], new_attr = by_col_attributes[[i]]) + } + } + }, + + + #' Calculate Summaries for Specified Columns + #' @description This method computes summary statistics for specified columns in the data, + #' grouping by optional factors. It supports multiple summary functions (e.g., mean, sum) + #' and can handle missing values through the `na.rm` parameter. + #' + #' @param calc A calculation object containing parameters for the summary. The object + #' should include: + #' - `columns_to_summarise`: Columns to compute the summaries for. + #' - `summaries`: Functions to apply (e.g., `"mean"`, `"sum"`). + #' - `factors`: Grouping factors for the summaries. + #' - `drop`: Whether to drop unused factor levels. Default is `FALSE`. + #' - `add_cols`: Additional columns to include in the output. + #' - `na.rm`: Logical, whether to remove missing values in the summaries. Default is `FALSE`. + #' - `filters`: Filters to apply before performing the summaries. + #' @param ... Additional arguments to pass to the summary functions. + #' + #' @return A data frame containing the computed summaries. The output includes the grouping + #' factors and the computed summary statistics. + #' + #' @details + #' - The method applies the specified summaries to the columns provided in `columns_to_summarise`, + #' grouping by `factors`. + #' - Filters can be applied to restrict the data before calculating summaries. + #' - Multiple summaries and columns can be computed in a single call. + calculate_summary = function(calc, ...) { + columns_to_summarise = calc[["parameters"]][["columns_to_summarise"]] + summaries = calc[["parameters"]][["summaries"]] + factors = calc[["parameters"]][["factors"]] + drop = calc[["parameters"]][["drop"]] + add_cols = calc[["parameters"]][["add_cols"]] + if("na.rm" %in% names(calc[["parameters"]])) na.rm = calc[["parameters"]][["na.rm"]] + else na.rm = FALSE + filter_names = calc[["filters"]] + if(missing(summaries)) stop("summaries must be specified") + # Removed since curr_data_filter has same columns + # curr_data_full <- self$get_data_frame(use_current_filter = FALSE) + # if(!all(columns_to_summarise %in% names(curr_data_full))) stop(paste("Some of the columns from:",paste(columns_to_summarise, collapse = ","),"were not found in the data.")) + # if(!all(summaries %in% all_summaries)) stop(paste("Some of the summaries from:",paste(summaries, collapse = ","),"were not recognised.")) + # if(!all(factors %in% names(curr_data_full))) stop(paste("Some of the factors:","c(",paste(factors, collapse = ","),") were not found in the data.")) + combinations = expand.grid(summaries,columns_to_summarise) + # Removed to only keep general case + # if(length(summaries)==1) { + # if(length(columns_to_summarise) == 1) out = ddply(curr_data_filter, factors, function(x) match.fun(summaries)(x[[columns_to_summarise]],...), .drop = drop) + # else out = ddply(curr_data_filter, factors, function(x) sapply(columns_to_summarise, function(y) match.fun(summaries)(x[[y]],...)), .drop = drop) + # } + # else { + # if(length(columns_to_summarise) == 1) out = ddply(curr_data_filter, factors, function(x) sapply(summaries, function(y) match.fun(y)(x[[columns_to_summarise]],...)), .drop = drop) + # else out = ddply(curr_data_filter, factors, function(x) apply(combinations, 1, FUN = function(y) match.fun(y[[1]])(x[[y[[2]]]],...)), .drop = drop) + # } + if(length(filter_names) == 0) { + filter_names <- "no_filter" + } + i = 1 + for(filter_name in filter_names) { + curr_data_filter <- self$get_data_frame(use_current_filter = TRUE, filter_name = filter_name) + curr_filter <- self$get_filter(filter_name) + if(self$filter_applied()) { + calc_filters <- list(self$get_current_filter(), curr_filter) + } + else calc_filters <- list(curr_filter) + if(!all(columns_to_summarise %in% names(curr_data_filter))) stop(paste("Some of the columns from:",paste(columns_to_summarise, collapse = ","),"were not found in the data.")) + if(!all(summaries %in% all_summaries)) stop(paste("Some of the summaries from:",paste(summaries, collapse = ","),"were not recognised.")) + if(!all(factors %in% names(curr_data_filter))) stop(paste("Some of the factors:","c(",paste(factors, collapse = ","),") were not found in the data.")) + + out <- plyr::ddply(curr_data_filter, factors, function(x) apply(combinations, 1, FUN = function(y) { + # temp disabled to allow na.rm to be passed in + #na.rm <- missing_values_check(x[[y[[2]]]]) + if("na.rm" %in% names(list(...))) stop("na.rm should not be specified. Use xxx to specify missing values handling.") + match.fun(y[[1]])(x[[y[[2]]]], add_cols = x[add_cols], na.rm = na.rm, ...) + } + ), .drop = drop) + names(out)[-(1:length(factors))] <- get_summary_calculation_names(calc, summaries, columns_to_summarise, calc_filters) + if(i == 1) { + calc_columns <- out + } + else { + calc_columns <- full_join(calc_columns, out) + } + i = i + 1 + } + return(calc_columns) + }, + #' Display Daily Summary Table #' @description Display a daily summary table for a specified climatic data element. #' @param data_name A character string representing the name of the dataset. diff --git a/man/DataSheet.Rd b/man/DataSheet.Rd index 737c6c0..9c588d9 100644 --- a/man/DataSheet.Rd +++ b/man/DataSheet.Rd @@ -27,6 +27,16 @@ calculation names in the \code{private$calculations} environment. \item If a calculation with the same name already exists in \code{private$calculations}, it will be replaced, and a warning will be issued to inform the user. \item The calculation is saved in the \code{private$calculations} list, keyed by its \code{name}. +\item The method ensures that the data types of the columns specified in \code{by} are aligned +(e.g., converting factors to numeric if necessary). +\item Metadata from the original data is preserved and updated after the merge. +\item Column attributes for the \code{by} columns are restored after the merge. +Calculate Summaries for Specified Columns +\item The method applies the specified summaries to the columns provided in \code{columns_to_summarise}, +grouping by \code{factors}. +\item Filters can be applied to restrict the data before calculating summaries. +\item Multiple summaries and columns can be computed in a single call. +Display Daily Summary Table } This function retrieves the data frame associated with the specified dataset and renames columns to standardise \code{Date}, \code{Year}, and \code{Station} for ease of processing. It then displays a daily summary table using the specified climatic elements, handling missing codes, trace codes, and zero codes as defined. Monthly statistics are calculated based on the \code{monstats} argument. @@ -34,7 +44,7 @@ This function retrieves the data frame associated with the specified dataset and \note{ Be cautious when replacing existing calculations, as the new calculation will overwrite the previous one without confirmation. -Display Daily Summary Table +Merge New Data with Existing Data } \section{Methods}{ @@ -220,7 +230,10 @@ Display Daily Summary Table \item{\code{get_comment_ids()}}{Retrieves all comment IDs currently stored in the data sheet.} \item{\code{get_comments_as_data_frame()}}{Converts all comments in the data sheet to a data frame format for easier inspection and analysis.}related to calculation.R file in R-Instat -\item{\code{save_calculation(calc)}}{Save a Calculation to the DataSheet.} +\item{\code{save_calculation(calc)}}{Save a Calculation to the DataSheet.}related to summary_functions.R file in R-Instat + +\item{\code{merge_data(new_data, by = NULL, type = "left", match = "all")}{Merge New Data with Existing Data}} +\item{\code{calculate_summary(calc, ...)}{Calculate Summaries for Specified Columns}} } } @@ -436,6 +449,8 @@ If setting a value, column_selection must be a list.} \item \href{#method-DataSheet-get_comment_ids}{\code{DataSheet$get_comment_ids()}} \item \href{#method-DataSheet-get_comments_as_data_frame}{\code{DataSheet$get_comments_as_data_frame()}} \item \href{#method-DataSheet-save_calculation}{\code{DataSheet$save_calculation()}} +\item \href{#method-DataSheet-merge_data}{\code{DataSheet$merge_data()}} +\item \href{#method-DataSheet-calculate_summary}{\code{DataSheet$calculate_summary()}} \item \href{#method-DataSheet-display_daily_table}{\code{DataSheet$display_daily_table()}} \item \href{#method-DataSheet-clone}{\code{DataSheet$clone()}} } @@ -4417,6 +4432,72 @@ The name of the saved calculation (a character string). } } \if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataSheet-merge_data}{}}} +\subsection{Method \code{merge_data()}}{ +This method merges a new data frame with the existing data in the \code{DataSheet} object. +It supports multiple types of joins (left, right, inner, full) and ensures that the +data types of the columns used for merging are aligned. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataSheet$merge_data(new_data, by = NULL, type = "left", match = "all")}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{new_data}}{A data frame containing the new data to merge with the existing data.} + +\item{\code{by}}{A character vector specifying the columns to join by. If \code{NULL}, the function +will attempt to join by all columns with matching names.} + +\item{\code{type}}{A string specifying the type of join. Options are: +- \code{"left"}: Keeps all rows from the existing data. +- \code{"right"}: Keeps all rows from the new data. +- \code{"full"}: Keeps all rows from both data frames. +- \code{"inner"}: Keeps only rows that match in both data frames.} + +\item{\code{match}}{Reserved for future use. Currently not implemented.} +} +\if{html}{\out{
}} +} +\subsection{Returns}{ +None. The merged data is stored internally in the \code{DataSheet} object. +} +} +\if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataSheet-calculate_summary}{}}} +\subsection{Method \code{calculate_summary()}}{ +This method computes summary statistics for specified columns in the data, +grouping by optional factors. It supports multiple summary functions (e.g., mean, sum) +and can handle missing values through the \code{na.rm} parameter. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataSheet$calculate_summary(calc, ...)}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{calc}}{A calculation object containing parameters for the summary. The object +should include: +- \code{columns_to_summarise}: Columns to compute the summaries for. +- \code{summaries}: Functions to apply (e.g., \code{"mean"}, \code{"sum"}). +- \code{factors}: Grouping factors for the summaries. +- \code{drop}: Whether to drop unused factor levels. Default is \code{FALSE}. +- \code{add_cols}: Additional columns to include in the output. +- \code{na.rm}: Logical, whether to remove missing values in the summaries. Default is \code{FALSE}. +- \code{filters}: Filters to apply before performing the summaries.} + +\item{\code{...}}{Additional arguments to pass to the summary functions.} +} +\if{html}{\out{
}} +} +\subsection{Returns}{ +A data frame containing the computed summaries. The output includes the grouping +factors and the computed summary statistics. +} +} +\if{html}{\out{
}} \if{html}{\out{}} \if{latex}{\out{\hypertarget{method-DataSheet-display_daily_table}{}}} \subsection{Method \code{display_daily_table()}}{ From ea7fb920fb18fc82242acc9dd49e28fad7dc2218 Mon Sep 17 00:00:00 2001 From: lilyclements Date: Wed, 20 Nov 2024 13:45:39 +0000 Subject: [PATCH 2/2] adding from summary_functions.R into databook --- R/data_book.R | 570 +++++++++++++++++++++++++++++++++++++++++++++++- man/DataBook.Rd | 270 ++++++++++++++++++++++- 2 files changed, 831 insertions(+), 9 deletions(-) diff --git a/R/data_book.R b/R/data_book.R index fd33399..afc5e78 100644 --- a/R/data_book.R +++ b/R/data_book.R @@ -249,14 +249,19 @@ #' #' # from calculations.R in R-Instat #' \item{\code{apply_calculation(calc)}{Apply a Calculation to Data in the DataBook}} -#' \item{\code{save_calculation(end_data_frame, calc)}{Save a Calculation to a Data Frame}} -#' \item{\code{apply_instat_calculation(calc, curr_data_list, previous_manipulations = list(), param_list = list())}{Apply an Instat Calculation}} -#' \item{\code{run_instat_calculation(calc, display = TRUE, param_list = list())}{Run an Instat Calculation and Display Results}} -#' \item{\code{get_corresponding_link_columns(first_data_frame_name, first_data_frame_columns, second_data_frame_name)}{Get Corresponding Link Columns}} -#' \item{\code{get_link_columns_from_data_frames(first_data_frame_name, first_data_frame_columns, second_data_frame_name, second_data_frame_columns)}{Get Link Columns Between Data Frames}} -#' \item{\code{save_calc_output(calc, curr_data_list, previous_manipulations)}{Save the Output of a Calculation}} - - +#' \item{\code{save_calculation(end_data_frame, calc)}{Save a Calculation to a Data Frame}} +#' \item{\code{apply_instat_calculation(calc, curr_data_list, previous_manipulations = list(), param_list = list())}{Apply an Instat Calculation}} +#' \item{\code{run_instat_calculation(calc, display = TRUE, param_list = list())}{Run an Instat Calculation and Display Results}} +#' \item{\code{get_corresponding_link_columns(first_data_frame_name, first_data_frame_columns, second_data_frame_name)}{Get Corresponding Link Columns}} +#' \item{\code{get_link_columns_from_data_frames(first_data_frame_name, first_data_frame_columns, second_data_frame_name, second_data_frame_columns)}{Get Link Columns Between Data Frames}} +#' \item{\code{save_calc_output(calc, curr_data_list, previous_manipulations)}{Save the Output of a Calculation}} +#' +#' # from summary_functions.R in R-Instat +#' \item{\code{append_summaries_to_data_object(out, data_name, columns_to_summarise, summaries, factors = c(), summary_name, calc, calc_name = "")}{Append Summaries to a Data Object}} +#' \item{\code{calculate_summary(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_results = TRUE, drop = TRUE, return_output = FALSE, summary_name = NA, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, perc_return_all = FALSE, include_counts_with_percentage = FALSE, silent = FALSE, additional_filter, original_level = FALSE, signif_fig = 2, sep = "_", ...)}{Calculate Summaries for a Data Object}} +#' \item{\code{summary(data_name, columns_to_summarise, summaries, factors = c(), store_results = FALSE, drop = FALSE, return_output = FALSE, summary_name = NA, add_cols = c(), filter_names = c(), ...)}{Perform and Return Summaries for a Data Object}} +#' \item{\code{summary_table(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_table = FALSE, store_results = FALSE, drop = TRUE, na.rm = FALSE, summary_name = NA, include_margins = FALSE, margins = "outer", return_output = FALSE, treat_columns_as_factor = FALSE, page_by = NULL, signif_fig = 2, na_display = "", na_level_display = "NA", weights = NULL, caption = NULL, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, include_counts_with_percentage = FALSE, margin_name = "(All)", additional_filter, ...)}{Generate a Summary Table}} +#' #' @export DataBook <- R6::R6Class("DataBook", public = list( @@ -5570,6 +5575,555 @@ DataBook <- R6::R6Class("DataBook", self$save_calculation(to_data_name, calc) }, + #' Append Summaries to a Data Object + #' + #' @description This method appends the results of a summary calculation to a data object + #' in the `DataBook`. If a corresponding summary data object exists, the method + #' merges the new summary into it. Otherwise, it creates a new summary data object. + #' + #' @param out A data frame containing the summary calculation results. + #' @param data_name A string specifying the name of the data object to which the summaries relate. + #' @param columns_to_summarise A character vector of columns included in the summary. + #' @param summaries A character vector of summary operations performed (e.g., `"mean"`, `"sum"`). + #' @param factors A character vector of grouping factors used in the summary. Default is `c()`. + #' @param summary_name A string specifying the name of the summary data object. Default is generated dynamically. + #' @param calc The calculation object containing metadata about the calculation. + #' @param calc_name Optional. The name of the calculation. Default is an empty string. + #' + #' @details + #' - If a summary data object with the specified `factors` already exists, this method merges the new summary into it. + #' - If no such data object exists, it creates a new one and links it to the original data object via the specified `factors`. + #' - Metadata is updated to track dependencies and indicate calculated columns. + #' + #' @return None. The operation is performed in place. + append_summaries_to_data_object = function(out, data_name, columns_to_summarise, summaries, factors = c(), summary_name, calc, calc_name = "") { + if(!is.character(data_name)) stop("data_name must be of type character") + + exists = FALSE + if(self$link_exists_from(data_name, factors)) { + #TODO what happens if there is more than 1? + summary_name <- self$get_linked_to_data_name(data_name, factors)[1] + summary_obj <- self$get_data_objects(summary_name) + exists <- TRUE + } + if(exists) { + #temp fix to avoid error merging data with overlapping names + curr_data <- summary_obj$get_data_frame(use_current_filter = FALSE) + for(i in 1:length(names(out))) { + curr_col_name <- names(out)[[i]] + if((!curr_col_name %in% factors) && curr_col_name %in% names(curr_data)) { + names(out)[[i]] <- next_default_item(curr_col_name, names(curr_data)) + } + } + summary_obj$merge_data(out, by = factors, type = "inner", match = "first") + } + else { + summary_data <- list() + if(missing(summary_name) || is.na(summary_name)) summary_name <- paste(data_name, "by", paste(factors, collapse = "_"), sep="_") + summary_name <- make.names(summary_name) + summary_name <- next_default_item(summary_name, self$get_data_names(), include_index = FALSE) + summary_data[[summary_name]] <- out + self$import_data(summary_data) + summary_obj <- self$get_data_objects(summary_name) + # TODO Should the be done here or in add_link? + #summary_obj$add_key(factors) + names(factors) <- factors + self$add_link(data_name, summary_name, factors, keyed_link_label) + } + + calc_out_columns <- names(out)[-(1:length(factors))] + dependent_cols <- list(calc_out_columns) + names(dependent_cols) <- summary_name + dependencies_cols <- list(columns_to_summarise) + names(dependencies_cols) <- data_name + calc_name <- self$save_calculation(summary_name, calc) + self$append_to_variables_metadata(data_name, columns_to_summarise, has_dependants_label, TRUE) + self$add_dependent_columns(data_name, columns_to_summarise, dependent_cols) + self$append_to_variables_metadata(summary_name, calc_out_columns, is_calculated_label, TRUE) + self$append_to_variables_metadata(summary_name, calc_out_columns, calculated_by_label, calc_name) + if(!exists) { + self$append_to_variables_metadata(summary_name, names(out)[1:length(factors)], is_calculated_label, TRUE) + self$append_to_variables_metadata(summary_name, names(out)[1:length(factors)], calculated_by_label, calc_name) + } + self$append_to_variables_metadata(summary_name, calc_out_columns, dependencies_label, dependencies_cols) + }, + + #' Calculate Summaries for a Data Object + #' + #' @description This method performs summary calculations on specified columns of a data object, optionally grouped by factors, + #' and stores the results in the `DataBook`. + #' + #' @param data_name A string specifying the name of the data object to summarise. + #' @param columns_to_summarise A character vector of columns to summarise. If `NULL`, the first column is used for counts. + #' @param summaries A character vector specifying the summary functions to apply (e.g., `"mean"`, `"sum"`). + #' @param factors A character vector of grouping factors. Default is `c()`. + #' @param store_results Logical. If `TRUE`, the results are stored in the `DataBook`. Default is `TRUE`. + #' @param drop Logical. Whether to drop unused factor levels. Default is `TRUE`. + #' @param return_output Logical. If `TRUE`, returns the summary results. Default is `FALSE`. + #' @param summary_name A string specifying the name of the summary data object. Default is `NA`. + #' @param ... Additional arguments passed to the summary functions. + #' + #' @return If `return_output = TRUE`, a data frame containing the summary results; otherwise, `NULL`. + #' + #' @details + #' - Supports percentage calculations through the `percentage_type` parameter (e.g., `"none"`, `"factors"`, `"columns"`). + #' - Handles weighted summaries and additional filters if specified. + #' - Groups data by factors before applying the summary functions. + calculate_summary = function(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_results = TRUE, drop = TRUE, return_output = FALSE, summary_name = NA, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, perc_return_all = FALSE, include_counts_with_percentage = FALSE, silent = FALSE, additional_filter, original_level = FALSE, signif_fig = 2, sep = "_", ...) { + if(original_level) type <- "calculation" + else type <- "summary" + include_columns_to_summarise <- TRUE + if(is.null(columns_to_summarise) || length(columns_to_summarise) == 0) { + # temporary fix for doing counts of a data frame + # dplyr cannot count data frame groups without passing a column (https://stackoverflow.com/questions/44217265/passing-correct-data-frame-from-within-dplyrsummarise) + # This is a known issue (https://github.com/tidyverse/dplyr/issues/2752) + if(length(summaries) != 1 || summaries != count_label) { + mes <- "When there are no columns to summarise can only use count function as summary" + if(silent) { + warning(mes, "Continuing summaries by using count only.") + columns_to_summarise <- self$get_column_names(data_name)[1] + summaries <- count_label + } + else { + stop(mes) + } + } + else columns_to_summarise <- self$get_column_names(data_name)[1] + include_columns_to_summarise <- FALSE + } + if(!percentage_type %in% c("none", "factors", "columns", "filter")) stop("percentage_type: ", percentage_type, " not recognised.") + if(percentage_type == "columns") { + if(!(length(perc_total_columns) == 1 || length(perc_total_columns) == length(columns_to_summarise))) stop("perc_total_columns must either be of length 1 or the same length as columns_to_summarise") + } + if(!store_results) save <- 0 + else save <- 2 + summaries_display <- as.vector(sapply(summaries, function(x) ifelse(startsWith(x, "summary_"), substring(x, 9), x))) + if(percentage_type == "factors") { + manip_factors <- intersect(factors, perc_total_factors) + } + else manip_factors <- factors + if(length(manip_factors) > 0) { + calculated_from <- as.list(manip_factors) + names(calculated_from) <- rep(data_name, length(manip_factors)) + calculated_from <- as.list(calculated_from) + factor_by <- instat_calculation$new(type = "by", calculated_from = calculated_from, param_list = list(drop = drop)) + manipulations <- list(factor_by) + } + else manipulations <- list() + if(percentage_type == "factors") { + value_factors <- setdiff(factors, manip_factors) + if(length(value_factors) > 0) { + calculated_from <- as.list(value_factors) + names(calculated_from) <- rep(data_name, length(value_factors)) + calculated_from <- as.list(calculated_from) + factor_by <- instat_calculation$new(type = "by", calculated_from = calculated_from, param_list = list(drop = drop)) + value_manipulations <- list(factor_by) + } + else value_manipulations <- list() + } + sub_calculations <- list() + + i <- 0 + for(column_names in columns_to_summarise) { + i <- i + 1 + # In the case of counting without columns, the first column column will be the "calculated from" + # which will add unwanted column metadata + calculated_from <- list(column_names) + names(calculated_from) <- rep(data_name, length(calculated_from)) + j <- 0 + for(summary_type in summaries) { + j <- j + 1 + function_exp <- "" + # if(!is.null(weights)) { + # function_exp <- paste0(function_exp, ", weights = ", weights) + # } + extra_args <- list(...) + for(i in seq_along(extra_args)) { + function_exp <- paste0(function_exp, ", ", names(extra_args)[i], " = ", extra_args[i]) + } + function_exp <- paste0(function_exp, ")") + # function_exp <- paste0(function_exp, ", na.rm =", na.rm, ")") + if(is.null(result_names)) { + result_name = summaries_display[j] + if(include_columns_to_summarise) result_name = paste0(result_name, sep, column_names) + } + #TODO result_names could be horizontal/vertical vector, matrix or single value + else result_name <- result_names[i,j] + if(percentage_type == "none") { + summary_function_exp <- paste0(summary_type, "(x = ", column_names, function_exp) + summary_calculation <- instat_calculation$new(type = type, result_name = result_name, + function_exp = summary_function_exp, + calculated_from = calculated_from, save = save) + } + else { + values_calculation <- instat_calculation$new(type = type, result_name = result_name, + function_exp = paste0(summary_type, "(x = ", column_names, function_exp), + calculated_from = calculated_from, save = save) + if(percentage_type == "columns") { + if(length(perc_total_columns) == 1) perc_col_name <- perc_total_columns + else perc_col_name <- perc_total_columns[i] + totals_calculation <- instat_calculation$new(type = type, result_name = paste0(summaries_display[j], sep, perc_total_columns, "_totals"), + function_exp = paste0(summary_type, "(x = ", perc_col_name, function_exp), + calculated_from = calculated_from, save = save) + } + else if(percentage_type == "filter") { + #TODO + } + else if(percentage_type == "factors") { + values_calculation$manipulations <- value_manipulations + totals_calculation <- instat_calculation$new(type = "summary", result_name = paste0(result_name, "_totals"), + function_exp = paste0(summary_type, "(x = ", column_names, function_exp), + calculated_from = calculated_from, save = save) + } + function_exp <- paste0(values_calculation$result_name, "/", totals_calculation$result_name) + if(!perc_decimal) { + function_exp <- paste0("(", function_exp, ") * 100") + } + perc_result_name <- paste0("perc_", result_name) + summary_calculation <- instat_calculation$new(type = "calculation", result_name = perc_result_name, + function_exp = function_exp, + calculated_from = list(), save = save, sub_calculations = list(totals_calculation, values_calculation)) + } + sub_calculations[[length(sub_calculations) + 1]] <- summary_calculation + } + } + if(self$filter_applied(data_name)) { + curr_filter <- self$get_current_filter(data_name) + curr_filter_name <- curr_filter[["name"]] + curr_filter_calc <- self$get_filter_as_instat_calculation(data_name, curr_filter_name) + manipulations <- c(curr_filter_calc, manipulations) + } + if(!missing(additional_filter)) { + manipulations <- c(additional_filter, manipulations) + } + combined_calc_sum <- instat_calculation$new(type="combination", sub_calculations = sub_calculations, manipulations = manipulations) + + # setting up param_list. Here we read in .drop and .preserve + param_list <- list() + if (length(combined_calc_sum$manipulations) > 0){ + for (i in 1:length(combined_calc_sum$manipulations)){ + if (combined_calc_sum$manipulations[[i]]$type %in% c("by", "filter")){ + param_list <- c(param_list, combined_calc_sum$manipulations[[i]]$param_list) + } + } + } + out <- self$apply_instat_calculation(combined_calc_sum, param_list = param_list) + # relocate so that the factors are first still for consistency + if (percentage_type != "none"){ + out$data <- (out$data %>% dplyr::select(c(tidyselect::all_of(factors), tidyselect::all_of(manip_factors)), tidyselect::everything())) + } + if(return_output) { + dat <- out$data + if(percentage_type == "none" || perc_return_all) return(out$data) + else { + #This is a temp fix to only returning final percentage columns. + #Depends on result name format used above for summary_calculation in percentage case + if (percentage_type != "none" && include_counts_with_percentage){ + dat <- dat %>% dplyr::mutate(dplyr::across(where(is.numeric), round, signif_fig)) + dat <- dat %>% dplyr::mutate(perc_count = paste0(count, " (", perc_count, "%)")) %>% dplyr::select(-c("count", "count_totals")) + } else { + dat[c(which(names(dat) %in% factors), which(startsWith(names(dat), "perc_")))] + } + } + } + }, + + #' Perform and Return Summaries for a Data Object + #' + #' @description This method performs summary calculations for specified columns, grouped by optional factors, + #' and returns the results as a data frame. Unlike `calculate_summary`, this method does not + #' store the results unless explicitly requested. + #' + #' @param data_name A string specifying the name of the data object to summarise. + #' @param columns_to_summarise A character vector of columns to summarise. + #' @param summaries A character vector specifying the summary functions to apply. + #' @param factors A character vector of grouping factors. Default is `c()`. + #' @param store_results Logical. If `TRUE`, stores the results in the `DataBook`. Default is `FALSE`. + #' @param drop Logical. Whether to drop unused factor levels. Default is `FALSE`. + #' @param return_output Logical. If `TRUE`, returns the summary results. Default is `FALSE`. + #' @param summary_name Optional. A string specifying the name of the summary data object. + #' @param ... Additional arguments passed to the summary functions. + #' + #' @return A data frame containing the summary results. + #' + #' @details + #' - Summaries are grouped by the specified `factors`, if provided. + #' - Supports handling of missing values and custom result formatting. + #' - Can perform multiple summary functions on multiple columns in a single call. + summary = function(data_name, columns_to_summarise, summaries, factors = c(), store_results = FALSE, drop = FALSE, return_output = FALSE, summary_name = NA, add_cols = c(), filter_names = c(), ...) { + calculated_from = list() + calculated_from[[1]] <- list(data_name = data_name, columns = columns_to_summarise) + summaries <- unique(summaries) + summaries <- summaries[order(match(summaries, all_summaries))] + summaries_count <- summaries[startsWith(summaries, "summary_count")] + summaries_other <- setdiff(summaries, summaries_count) + summaries <- c(summaries_count, summaries_other) + count_summaries_max <- length(summaries_count) + summaries_max <- length(summaries) + + summary_names <- ifelse(startsWith(summaries, "summary_"), substr(summaries, 9, nchar(summaries)), summaries) + summary_names <- gsub("_", "__", summary_names) + summary_names <- make.unique(summary_names) + summary_count_names <- summary_names[1:count_summaries_max] + summary_other_names <- summary_names[(count_summaries_max + 1):summaries_max] + + col_data_type <- self$get_variables_metadata(data_name = data_name, column = columns_to_summarise, property = data_type_label) + + factors_disp <- dplyr::if_else(length(factors) == 0, ".id", factors) + factors_levels <- lapply(factors, function(x) { + fac_col <- self$get_columns_from_data(data_name, x) + if(is.factor(fac_col)) return(levels(fac_col)) + else return(sort(unique(fac_col))) + }) + factors_levels <- expand.grid(factors_levels) + names(factors_levels) <- factors + + results <- list() + i <- 1 + for(col_new in columns_to_summarise) { + results_temp_count <- list() + results_temp_other <- list() + for(j in seq_along(summaries)) { + calc <- calculation$new(type = "summary", parameters = list(data_name = data_name, columns_to_summarise = col_new, summaries = summaries[j], factors = factors, store_results = store_results, drop = drop, return_output = return_output, summary_name = summary_name, add_cols = add_cols, ... = ...), filters = filter_names, calculated_from = calculated_from) + calc_apply <- tryCatch(self$apply_calculation(calc), + error = function(c) { + if(length(factors) == 0) { + x <- data.frame(NA, NA) + names(x) <- c(".id", summary_names[j]) + return(x) + } + else { + x <- factors_levels + x[[summary_names[j]]] <- NA + return(x) + } + }) + names(calc_apply)[length(factors_disp) + 1] <- col_new + calc_apply$summary <- summary_names[j] + names(calc_apply) <- make.names(names(calc_apply), unique = TRUE) + if(j <= count_summaries_max) results_temp_count[[length(results_temp_count) + 1]] <- calc_apply + else results_temp_other[[length(results_temp_other) + 1]] <- calc_apply + } + if(length(results_temp_count) > 0) { + results_temp_count <- dplyr::bind_rows(results_temp_count) + results_temp_count <- format(results_temp_count, scientific = FALSE) + } + if(length(results_temp_other) > 0) { + results_temp_other <- dplyr::bind_rows(results_temp_other) + results_temp_other <- format(results_temp_other, scientific = FALSE) + # Convert summaries which have been coerced to numeric but should be dates + if("Date" %in% col_data_type[i]) { + results_temp_other[[col_new]] <- dplyr::if_else(summaries_other[match(results_temp_other$summary, summary_other_names)] %in% date_summaries, + as.character(as.Date(as.numeric(results_temp_other[[col_new]]), origin = "1970/1/1")), + dplyr::if_else(stringr::str_trim(results_temp_other[[col_new]]) == "NA", NA_character_, paste(results_temp_other[[col_new]], "days"))) + } + } + results_temp <- dplyr::bind_rows(results_temp_count, results_temp_other) + if(i == 1) results <- results_temp + else results <- dplyr::full_join(results, results_temp, by = c(factors_disp, "summary")) + i <- i + 1 + } + results <- results %>% select(c(factors_disp, "summary"), everything()) + if(length(factors) == 0) { + results$.id <- NULL + results$summary <- NULL + row.names(results) <- summary_names + } + return(results) + }, + + #' Generate a Summary Table + #' + #' @description This method generates a summary table for a data object, grouped by specified factors, + #' and optionally includes margins and percentages. + #' + #' @param data_name A string specifying the name of the data object to summarise. + #' @param columns_to_summarise A character vector of columns to summarise. + #' @param summaries A character vector specifying the summary functions to apply. + #' @param factors A character vector of grouping factors. Default is `c()`. + #' @param store_table Logical. If `TRUE`, stores the summary table in the `DataBook`. Default is `FALSE`. + #' @param include_margins Logical. If `TRUE`, includes margins (e.g., totals) in the table. Default is `FALSE`. + #' @param return_output Logical. If `TRUE`, returns the summary table. Default is `FALSE`. + #' @param percentage_type A string specifying the type of percentage calculation (`"none"`, `"factors"`, `"columns"`, `"filter"`). Default is `"none"`. + #' @param ... Additional arguments passed to the summary functions. + #' + #' @return A data frame containing the summary table. + #' + #' @details + #' - The table includes summaries for the specified columns and factors. + #' - Supports margins and percentage calculations based on grouping levels or column totals. + #' - Automatically handles missing values and can format results with significant figures. + summary_table = function(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_table = FALSE, store_results = FALSE, drop = TRUE, na.rm = FALSE, summary_name = NA, include_margins = FALSE, margins = "outer", return_output = FALSE, treat_columns_as_factor = FALSE, page_by = NULL, signif_fig = 2, na_display = "", na_level_display = "NA", weights = NULL, caption = NULL, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, include_counts_with_percentage = FALSE, margin_name = "(All)", additional_filter, ...) { + # TODO: write in errors + if (na_level_display == "") stop("na_level_display must be a non empty string") + # removes "summary_" from beginning of summary function names so that display is nice + summaries_display <- sapply(summaries, function(x) ifelse(startsWith(x, "summary_"), substring(x, 9), x)) + + # todo: add in code to store results if store_results = TRUE on the dialog + # only give this option if there is 1 column factor. + if (!store_results) { + save <- 0 + } else { + save <- 2 + } + + cell_values <- self$calculate_summary(data_name = data_name, columns_to_summarise = columns_to_summarise, summaries = summaries, factors = factors, store_results = FALSE, drop = drop, na.rm = na.rm, return_output = TRUE, weights = weights, result_names = result_names, percentage_type = percentage_type, perc_total_columns = perc_total_columns, perc_total_factors = perc_total_factors, perc_total_filter = perc_total_filter, perc_decimal = perc_decimal, include_counts_with_percentage = include_counts_with_percentage, margin_name = margin_name, additional_filter = additional_filter, perc_return_all = FALSE, signif_fig = signif_fig, sep = "__", ...) + for (i in seq_along(factors)) { + levels(cell_values[[i]]) <- c(levels(cell_values[[i]]), na_level_display) + cell_values[[i]][is.na(cell_values[[i]])] <- na_level_display + } + cell_values <- cell_values %>% dplyr::mutate(dplyr::across(where(is.numeric), round, signif_fig)) + cell_values <- cell_values %>% + tidyr::pivot_longer(cols = !factors, names_to = "summary-variable", values_to = "value", values_transform = list(value = as.character)) + if (treat_columns_as_factor && !is.null(columns_to_summarise)) { + cell_values <- cell_values %>% + tidyr::separate(col = "summary-variable", into = c("summary", "variable"), sep = "__") + } + shaped_cell_values <- cell_values %>% dplyr::relocate(value, .after = last_col()) + + for (i in seq_along(factors)) { + levels(shaped_cell_values[[i]]) <- c(levels(shaped_cell_values[[i]]), margin_name) + } + + # If margins --------------------------------------------------------------------------- + if (include_margins) { + margin_tables <- list() + power_sets <- rje::powerSet(factors) + # We could need last set if only have row or column factors + power_sets_outer <- power_sets[-(c(length(power_sets)))] + if (treat_columns_as_factor && !is.null(columns_to_summarise)) { + order_names <- unique(paste(shaped_cell_values$summary, shaped_cell_values$variable, sep = "__")) + } else { + order_names <- unique(shaped_cell_values$summary) + } + for (facts in power_sets_outer) { + if (length(facts) == 0) facts <- c() + margin_tables[[length(margin_tables) + 1]] <- self$calculate_summary(data_name = data_name, columns_to_summarise = columns_to_summarise, summaries = summaries, factors = facts, store_results = FALSE, drop = drop, na.rm = na.rm, return_output = TRUE, weights = weights, result_names = result_names, percentage_type = percentage_type, perc_total_columns = perc_total_columns, perc_total_factors = perc_total_factors, perc_total_filter = perc_total_filter, perc_decimal = perc_decimal, include_counts_with_percentage = include_counts_with_percentage, margin_name = margin_name, additional_filter = additional_filter, perc_return_all = FALSE, signif_fig = signif_fig, sep = "__", ...) + } + # for outer margins + margin_item <- length(summaries) * length(columns_to_summarise) + + if (("outer" %in% margins) && (length(factors) > 0)) { + # to prevent changing all variables to dates/converting dates to numeric + for (i in 1:length(margin_tables)){ + margin_tables[[i]] <- margin_tables[[i]] %>% dplyr::mutate(dplyr::across(where(is.numeric), round, signif_fig)) + margin_tables[[i]] <- margin_tables[[i]] %>% purrr::modify_if(lubridate::is.Date, as.character) + } + outer_margins <- plyr::ldply(margin_tables) + # Change shape + if (length(margin_tables) == 1) { + outer_margins <- plyr::ldply(margin_tables[[1]]) + names(outer_margins) <- c("summary-variable", "value") + } else { + outer_margins <- outer_margins %>% + tidyr::pivot_longer(cols = 1:margin_item, values_to = "value", names_to = "summary-variable", values_transform = list(value = as.character)) + } + if (treat_columns_as_factor && !is.null(columns_to_summarise)) { + outer_margins <- outer_margins %>% + tidyr::separate(col = "summary-variable", into = c("summary", "variable"), sep = "__") + } + } else { + outer_margins <- NULL + } + if ("summary" %in% margins || ("outer" %in% margins && length(factors) == 0)) { + summary_margins <- NULL + if (is.null(columns_to_summarise)){ + power_sets_summary <- power_sets[-(length(power_sets))] + } else { + if ("outer" %in% margins) { + power_sets_summary <- power_sets + } else { + power_sets_summary <- power_sets[(c(length(power_sets)))] + } + } + + for (facts in power_sets_summary) { + if (length(facts) == 0) facts <- c() + if (is.null(columns_to_summarise)){ + summary_margins_df <- data_book$get_data_frame(data_name = data_name) %>% + dplyr::select(c(tidyselect::all_of(factors))) + data_book$import_data(data_tables = list(summary_margins_df = summary_margins_df)) + summary_margins[[length(summary_margins) + 1]] <- data_book$calculate_summary(data_name = "summary_margins_df", columns_to_summarise = NULL, summaries = summaries, factors = facts, store_results = FALSE, drop = drop, na.rm = na.rm, return_output = TRUE, weights = weights, result_names = result_names, percentage_type = percentage_type, perc_total_columns = perc_total_columns, perc_total_factors = perc_total_factors, perc_total_filter = perc_total_filter, perc_decimal = perc_decimal, include_counts_with_percentage = include_counts_with_percentage, margin_name = margin_name, additional_filter = additional_filter, perc_return_all = FALSE, signif_fig = signif_fig, ...) + } else { + summary_margins_df <- data_book$get_data_frame(data_name = data_name) %>% + dplyr::select(c(tidyselect::all_of(factors), tidyselect::all_of(columns_to_summarise))) %>% + tidyr::pivot_longer(cols = columns_to_summarise, values_transform = list(value = as.character)) + data_book$import_data(data_tables = list(summary_margins_df = summary_margins_df)) + summary_margins[[length(summary_margins) + 1]] <- data_book$calculate_summary(data_name = "summary_margins_df", columns_to_summarise = "value", summaries = summaries, factors = facts, store_results = FALSE, drop = drop, na.rm = na.rm, return_output = TRUE, weights = weights, result_names = result_names, percentage_type = percentage_type, perc_total_columns = perc_total_columns, perc_total_factors = perc_total_factors, perc_total_filter = perc_total_filter, perc_decimal = perc_decimal, include_counts_with_percentage = include_counts_with_percentage, margin_name = margin_name, additional_filter = additional_filter, perc_return_all = FALSE, signif_fig = signif_fig, ...) + + } + data_book$delete_dataframes(data_names = "summary_margins_df") + } + summary_margins <- plyr::ldply(summary_margins) + if (treat_columns_as_factor && !is.null(columns_to_summarise)) { + # remove "_value" in them + for (col in 1:ncol(summary_margins)) { + colnames(summary_margins)[col] <- sub("_value", "", colnames(summary_margins)[col]) + } + summary_margins <- summary_margins %>% + tidyr::pivot_longer(cols = !factors, names_to = "summary", values_to = "value", values_transform = list(value = as.character)) + } else { + if (length(summary_margins) == 1) { + summary_margins <- data.frame(summary_margins, `summary-variable` = "count", factors = NA) + names(summary_margins) <- c("value", "summary-variable", factors) + }else { + for (col in 1:ncol(summary_margins)) { + # TODO: if the colname is the same as a factor, then do nothing + colnames(summary_margins)[col] <- sub("_value", "_all", colnames(summary_margins)[col]) + } + summary_margins <- summary_margins %>% dplyr::mutate(dplyr::across(where(is.numeric), round, signif_fig)) + summary_margins <- summary_margins %>% + tidyr::pivot_longer(cols = !factors, names_to = "summary-variable", values_to = "value", values_transform = list(value = as.character)) + } + } + } else { + summary_margins <- NULL + } + if (!is.null(summary_margins) || !is.null(outer_margins)) { + margin_tables_all <- (dplyr::bind_rows(summary_margins, outer_margins)) + margin_tables_all <- margin_tables_all %>% + dplyr::mutate_at(vars(-value), ~ replace(., is.na(.), margin_name)) %>% + dplyr::mutate(value = as.character(value)) + + # if there is one factor, then we do not yet have the factor name in the df + # (this will be added in by dplyr::bind_rows(s_c_v, m_t_a)) + # by introducing it in the outer_margins bit, we have to add it in "manually" + # this then loses the class of it, creating issues for ordered vs non-ordered factors + # so we do these changes here. + if (length(factors) > 1){ + for (i in factors){ + shaped_cell_values_levels <- levels(shaped_cell_values[[i]]) + margin_tables_all <- margin_tables_all %>% + dplyr::mutate_at(i, ~ forcats::fct_expand(., shaped_cell_values_levels), + i, ~ forcats::fct_relevel(., shaped_cell_values_levels)) + } + } + shaped_cell_values <- dplyr::bind_rows(shaped_cell_values, margin_tables_all) %>% + dplyr::mutate_at(vars(-c(value)), tidyr::replace_na, margin_name) %>% + dplyr::mutate_at(vars(-c(value)), ~forcats::as_factor(forcats::fct_relevel(.x, margin_name, after = Inf))) + } + } + # To all data -------------------------------------------------------------------------- + # Used to make all values numeric, but stopped because of issues with ordered factors/dates. + # I don't think this line is needed anymore, but will keep it commented for now in case it becomes more apparent in the future + #if (percentage_type == "none" || include_counts_with_percentage == FALSE){ + # shaped_cell_values <- shaped_cell_values %>% dplyr::mutate(value = as.numeric(as.character(value)), + # value = round(value, signif_fig)) + #} + if (treat_columns_as_factor && !is.null(columns_to_summarise)){ + shaped_cell_values <- shaped_cell_values %>% + dplyr::mutate(summary = as.factor(summary)) %>% dplyr::mutate(summary = forcats::fct_relevel(summary, summaries_display)) %>% + dplyr::mutate(variable = as.factor(variable)) %>% dplyr::mutate(variable= forcats::fct_relevel(variable, columns_to_summarise)) + } + if (!treat_columns_as_factor && !is.null(columns_to_summarise)){ + shaped_cell_values <- shaped_cell_values %>% + dplyr::mutate(`summary-variable` = forcats::as_factor(`summary-variable`)) + } + if (store_table) { + data_book$import_data(data_tables = list(shaped_cell_values = shaped_cell_values)) + } + return(tibble::as_tibble(shaped_cell_values)) + }, #' Import SST #' @description Imports SST data and adds keys and links to the specified data tables. diff --git a/man/DataBook.Rd b/man/DataBook.Rd index fa0a491..06ac0c6 100644 --- a/man/DataBook.Rd +++ b/man/DataBook.Rd @@ -266,7 +266,13 @@ Save the Output of a Calculation \item{\code{run_instat_calculation(calc, display = TRUE, param_list = list())}{Run an Instat Calculation and Display Results}} \item{\code{get_corresponding_link_columns(first_data_frame_name, first_data_frame_columns, second_data_frame_name)}{Get Corresponding Link Columns}} \item{\code{get_link_columns_from_data_frames(first_data_frame_name, first_data_frame_columns, second_data_frame_name, second_data_frame_columns)}{Get Link Columns Between Data Frames}} -\item{\code{save_calc_output(calc, curr_data_list, previous_manipulations)}{Save the Output of a Calculation}} +\item{\code{save_calc_output(calc, curr_data_list, previous_manipulations)}{Save the Output of a Calculation}}from summary_functions.R in R-Instat + +\item{\code{append_summaries_to_data_object(out, data_name, columns_to_summarise, summaries, factors = c(), summary_name, calc, calc_name = "")}{Append Summaries to a Data Object}} +\item{\code{calculate_summary(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_results = TRUE, drop = TRUE, return_output = FALSE, summary_name = NA, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, perc_return_all = FALSE, include_counts_with_percentage = FALSE, silent = FALSE, additional_filter, original_level = FALSE, signif_fig = 2, sep = "_", ...)}{Calculate Summaries for a Data Object}} +\item{\code{summary(data_name, columns_to_summarise, summaries, factors = c(), store_results = FALSE, drop = FALSE, return_output = FALSE, summary_name = NA, add_cols = c(), filter_names = c(), ...)}{Perform and Return Summaries for a Data Object}} +\item{\code{summary_table(data_name, columns_to_summarise = NULL, summaries, factors = c(), store_table = FALSE, store_results = FALSE, drop = TRUE, na.rm = FALSE, summary_name = NA, include_margins = FALSE, margins = "outer", return_output = FALSE, treat_columns_as_factor = FALSE, page_by = NULL, signif_fig = 2, na_display = "", na_level_display = "NA", weights = NULL, caption = NULL, result_names = NULL, percentage_type = "none", perc_total_columns = NULL, perc_total_factors = c(), perc_total_filter = NULL, perc_decimal = FALSE, include_counts_with_percentage = FALSE, margin_name = "(All)", additional_filter, ...)}{Generate a Summary Table}} + @export } @@ -519,6 +525,10 @@ Save the Output of a Calculation \item \href{#method-DataBook-get_corresponding_link_columns}{\code{DataBook$get_corresponding_link_columns()}} \item \href{#method-DataBook-get_link_columns_from_data_frames}{\code{DataBook$get_link_columns_from_data_frames()}} \item \href{#method-DataBook-save_calc_output}{\code{DataBook$save_calc_output()}} +\item \href{#method-DataBook-append_summaries_to_data_object}{\code{DataBook$append_summaries_to_data_object()}} +\item \href{#method-DataBook-calculate_summary}{\code{DataBook$calculate_summary()}} +\item \href{#method-DataBook-summary}{\code{DataBook$summary()}} +\item \href{#method-DataBook-summary_table}{\code{DataBook$summary_table()}} \item \href{#method-DataBook-import_SST}{\code{DataBook$import_SST()}} \item \href{#method-DataBook-clone}{\code{DataBook$clone()}} } @@ -6843,9 +6853,267 @@ the calculation. \subsection{Returns}{ None. +Append Summaries to a Data Object +} +} +\if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataBook-append_summaries_to_data_object}{}}} +\subsection{Method \code{append_summaries_to_data_object()}}{ +This method appends the results of a summary calculation to a data object +in the \code{DataBook}. If a corresponding summary data object exists, the method +merges the new summary into it. Otherwise, it creates a new summary data object. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataBook$append_summaries_to_data_object( + out, + data_name, + columns_to_summarise, + summaries, + factors = c(), + summary_name, + calc, + calc_name = "" +)}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{out}}{A data frame containing the summary calculation results.} + +\item{\code{data_name}}{A string specifying the name of the data object to which the summaries relate.} + +\item{\code{columns_to_summarise}}{A character vector of columns included in the summary.} + +\item{\code{summaries}}{A character vector of summary operations performed (e.g., \code{"mean"}, \code{"sum"}).} + +\item{\code{factors}}{A character vector of grouping factors used in the summary. Default is \code{c()}.} + +\item{\code{summary_name}}{A string specifying the name of the summary data object. Default is generated dynamically.} + +\item{\code{calc}}{The calculation object containing metadata about the calculation.} + +\item{\code{calc_name}}{Optional. The name of the calculation. Default is an empty string.} +} +\if{html}{\out{
}} +} +\subsection{Details}{ +\itemize{ +\item If a summary data object with the specified \code{factors} already exists, this method merges the new summary into it. +\item If no such data object exists, it creates a new one and links it to the original data object via the specified \code{factors}. +\item Metadata is updated to track dependencies and indicate calculated columns. +} +} + +\subsection{Returns}{ +None. The operation is performed in place. +Calculate Summaries for a Data Object +} +} +\if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataBook-calculate_summary}{}}} +\subsection{Method \code{calculate_summary()}}{ +This method performs summary calculations on specified columns of a data object, optionally grouped by factors, +and stores the results in the \code{DataBook}. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataBook$calculate_summary( + data_name, + columns_to_summarise = NULL, + summaries, + factors = c(), + store_results = TRUE, + drop = TRUE, + return_output = FALSE, + summary_name = NA, + result_names = NULL, + percentage_type = "none", + perc_total_columns = NULL, + perc_total_factors = c(), + perc_total_filter = NULL, + perc_decimal = FALSE, + perc_return_all = FALSE, + include_counts_with_percentage = FALSE, + silent = FALSE, + additional_filter, + original_level = FALSE, + signif_fig = 2, + sep = "_", + ... +)}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{data_name}}{A string specifying the name of the data object to summarise.} + +\item{\code{columns_to_summarise}}{A character vector of columns to summarise. If \code{NULL}, the first column is used for counts.} + +\item{\code{summaries}}{A character vector specifying the summary functions to apply (e.g., \code{"mean"}, \code{"sum"}).} + +\item{\code{factors}}{A character vector of grouping factors. Default is \code{c()}.} + +\item{\code{store_results}}{Logical. If \code{TRUE}, the results are stored in the \code{DataBook}. Default is \code{TRUE}.} + +\item{\code{drop}}{Logical. Whether to drop unused factor levels. Default is \code{TRUE}.} + +\item{\code{return_output}}{Logical. If \code{TRUE}, returns the summary results. Default is \code{FALSE}.} + +\item{\code{summary_name}}{A string specifying the name of the summary data object. Default is \code{NA}.} + +\item{\code{...}}{Additional arguments passed to the summary functions.} +} +\if{html}{\out{
}} +} +\subsection{Details}{ +\itemize{ +\item Supports percentage calculations through the \code{percentage_type} parameter (e.g., \code{"none"}, \code{"factors"}, \code{"columns"}). +\item Handles weighted summaries and additional filters if specified. +\item Groups data by factors before applying the summary functions. +Perform and Return Summaries for a Data Object +} +} + +\subsection{Returns}{ +If \code{return_output = TRUE}, a data frame containing the summary results; otherwise, \code{NULL}. +} +} +\if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataBook-summary}{}}} +\subsection{Method \code{summary()}}{ +This method performs summary calculations for specified columns, grouped by optional factors, +and returns the results as a data frame. Unlike \code{calculate_summary}, this method does not +store the results unless explicitly requested. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataBook$summary( + data_name, + columns_to_summarise, + summaries, + factors = c(), + store_results = FALSE, + drop = FALSE, + return_output = FALSE, + summary_name = NA, + add_cols = c(), + filter_names = c(), + ... +)}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{data_name}}{A string specifying the name of the data object to summarise.} + +\item{\code{columns_to_summarise}}{A character vector of columns to summarise.} + +\item{\code{summaries}}{A character vector specifying the summary functions to apply.} + +\item{\code{factors}}{A character vector of grouping factors. Default is \code{c()}.} + +\item{\code{store_results}}{Logical. If \code{TRUE}, stores the results in the \code{DataBook}. Default is \code{FALSE}.} + +\item{\code{drop}}{Logical. Whether to drop unused factor levels. Default is \code{FALSE}.} + +\item{\code{return_output}}{Logical. If \code{TRUE}, returns the summary results. Default is \code{FALSE}.} + +\item{\code{summary_name}}{Optional. A string specifying the name of the summary data object.} + +\item{\code{...}}{Additional arguments passed to the summary functions.} +} +\if{html}{\out{
}} +} +\subsection{Details}{ +\itemize{ +\item Summaries are grouped by the specified \code{factors}, if provided. +\item Supports handling of missing values and custom result formatting. +\item Can perform multiple summary functions on multiple columns in a single call. +Generate a Summary Table +} +} + +\subsection{Returns}{ +A data frame containing the summary results. +} +} +\if{html}{\out{
}} +\if{html}{\out{}} +\if{latex}{\out{\hypertarget{method-DataBook-summary_table}{}}} +\subsection{Method \code{summary_table()}}{ +This method generates a summary table for a data object, grouped by specified factors, +and optionally includes margins and percentages. +\subsection{Usage}{ +\if{html}{\out{
}}\preformatted{DataBook$summary_table( + data_name, + columns_to_summarise = NULL, + summaries, + factors = c(), + store_table = FALSE, + store_results = FALSE, + drop = TRUE, + na.rm = FALSE, + summary_name = NA, + include_margins = FALSE, + margins = "outer", + return_output = FALSE, + treat_columns_as_factor = FALSE, + page_by = NULL, + signif_fig = 2, + na_display = "", + na_level_display = "NA", + weights = NULL, + caption = NULL, + result_names = NULL, + percentage_type = "none", + perc_total_columns = NULL, + perc_total_factors = c(), + perc_total_filter = NULL, + perc_decimal = FALSE, + include_counts_with_percentage = FALSE, + margin_name = "(All)", + additional_filter, + ... +)}\if{html}{\out{
}} +} + +\subsection{Arguments}{ +\if{html}{\out{
}} +\describe{ +\item{\code{data_name}}{A string specifying the name of the data object to summarise.} + +\item{\code{columns_to_summarise}}{A character vector of columns to summarise.} + +\item{\code{summaries}}{A character vector specifying the summary functions to apply.} + +\item{\code{factors}}{A character vector of grouping factors. Default is \code{c()}.} + +\item{\code{store_table}}{Logical. If \code{TRUE}, stores the summary table in the \code{DataBook}. Default is \code{FALSE}.} + +\item{\code{include_margins}}{Logical. If \code{TRUE}, includes margins (e.g., totals) in the table. Default is \code{FALSE}.} + +\item{\code{return_output}}{Logical. If \code{TRUE}, returns the summary table. Default is \code{FALSE}.} + +\item{\code{percentage_type}}{A string specifying the type of percentage calculation (\code{"none"}, \code{"factors"}, \code{"columns"}, \code{"filter"}). Default is \code{"none"}.} + +\item{\code{...}}{Additional arguments passed to the summary functions.} +} +\if{html}{\out{
}} +} +\subsection{Details}{ +\itemize{ +\item The table includes summaries for the specified columns and factors. +\item Supports margins and percentage calculations based on grouping levels or column totals. +\item Automatically handles missing values and can format results with significant figures. Import SST } } + +\subsection{Returns}{ +A data frame containing the summary table. +} +} \if{html}{\out{
}} \if{html}{\out{}} \if{latex}{\out{\hypertarget{method-DataBook-import_SST}{}}}