diff --git a/samri/plotting/development.py b/samri/plotting/development.py index 2c9c9fd8..ab585ee7 100644 --- a/samri/plotting/development.py +++ b/samri/plotting/development.py @@ -133,7 +133,7 @@ def roi_teaching(roi_path="~/ni_data/templates/roi/f_dr_chr.nii.gz"): def check_responders(): from samri.plotting import summary - summary.responders("subjectwise_composite") + summary.responders("composite_subjects") def qc_regressor(sessions, subjects, scans, workflow_name, mask, data_dir="~/ni_data/ofM.dr", diff --git a/samri/plotting/summary.py b/samri/plotting/summary.py index 4a3f9710..1888cea7 100644 --- a/samri/plotting/summary.py +++ b/samri/plotting/summary.py @@ -187,7 +187,7 @@ def analytic_pattern_per_session(substitutions, analytic_pattern, return fit, anova def responders(l2_dir, - roi="ctx_chr", + roi="DSURQEc_ctx", data_root="~/ni_data/ofM.dr", roi_root="~/ni_data/templates/roi" ): @@ -217,6 +217,7 @@ def responders(l2_dir, voxel_data["t"]=i df_ = pd.DataFrame(voxel_data, index=[None]) voxeldf = pd.concat([voxeldf,df_]) + voxeldf.to_csv('{}/ctx_responders.csv'.format(data_path)) def p_roi_masking(substitution, ts_file_template, beta_file_template, p_file_template, design_file_template, event_file_template, p_level, brain_mask): """Apply a substitution pattern to timecourse, beta, and design file templates - and mask the data of the former two according to a roi. Subsequently scale the design by the mean beta.