From ff626c65fe6a6ed8a094bf5d68ed3e5844f3ae74 Mon Sep 17 00:00:00 2001 From: Barry Trager Date: Wed, 4 Dec 2024 19:26:58 -0500 Subject: [PATCH] is_lim_alpha_inf and ex_series_beta --- coq/QLearn/jaakkola_vector.v | 49 ++++++++++++++++++++++++++++++++++++ 1 file changed, 49 insertions(+) diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index f63ac131..01a2d1c6 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -6956,6 +6956,55 @@ Proof. now apply IsL2_Finite. Qed. + Lemma is_lim_alpha_inf (α β : nat -> Ts -> vector R (S N)) : + almost prts (fun ω => forall k i pf, vector_nth i pf (β k ω) <= vector_nth i pf (α k ω)) -> + almost prts (fun ω => forall i pf, is_lim_seq (sum_n (fun k => vector_nth i pf (β k ω))) p_infty) -> + almost prts (fun ω => forall i pf, is_lim_seq (sum_n (fun k => vector_nth i pf (α k ω))) p_infty). + Proof. + intros ?. + apply almost_impl. + revert H; apply almost_impl. + apply all_almost; intros ???. + intros. + specialize (H0 i pf). + revert H0. + apply is_lim_seq_le_p_loc. + exists (0%nat). + intros. + apply sum_n_le_loc. + intros. + apply H. + Qed. + + Lemma ex_series_beta (α β : nat -> Ts -> vector R (S N)) : + almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) -> + almost prts (fun ω => forall k i pf, vector_nth i pf (β k ω) <= vector_nth i pf (α k ω)) -> + (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (α n ω))))) -> + (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (β n ω))))). + Proof. + intros. + specialize (H1 i pf). + revert H1; apply almost_impl. + revert H0; apply almost_impl. + revert H; apply almost_impl. + apply all_almost; intros ????. + revert H1. + apply ex_series_nneg_bounded. + - intros. + apply Rle_0_sqr. + - intros. + apply Rsqr_le_abs_1. + rewrite Rabs_right. + rewrite Rabs_right. + + apply H0. + + apply Rle_ge. + eapply Rle_trans. + apply H. + apply H0. + + apply Rle_ge. + apply H. + Qed. + Theorem Jaakkola_alpha_beta_unbounded_uniformly_W_alt (W : vector posreal (S N)) (X XF α β : nat -> Ts -> vector R (S N)) {F : nat -> SigmaAlgebra Ts}