diff --git a/coq/QLearn/Dvoretzky.v b/coq/QLearn/Dvoretzky.v index cfb31f09..9d8f862c 100644 --- a/coq/QLearn/Dvoretzky.v +++ b/coq/QLearn/Dvoretzky.v @@ -4017,11 +4017,11 @@ Lemma Dvoretzky_converge_W_alpha_beta_uniform (W w α β: nat -> Ts -> R) almost prts (fun ω : Ts => is_lim_seq (sum_n(fun n : nat => α n ω)) p_infty) -> almost prts (fun ω : Ts => is_lim_seq (sum_n (fun n : nat => β n ω)) p_infty) -> almost prts (fun ω => ex_series (fun n => Rsqr (β n ω))) -> - (forall epsilon : posreal, eventually (fun n => almostR2 prts Rbar_lt (fun ω => Lim_seq (sum_n (fun nn => rvsqr (β (nn+n)%nat) ω))) (const epsilon))) -> + (exists epsilon : posreal, eventually (fun n => almostR2 prts Rbar_lt (fun ω => Lim_seq (sum_n (fun nn => rvsqr (β (nn+n)%nat) ω))) (const epsilon))) -> (forall n, rv_eq (W (S n)) (rvplus (rvmult (rvminus (const 1) (α n)) (W n)) (rvmult (w n) (β n)))) -> almost _ (fun ω => is_lim_seq (fun n => W n ω) (Finite 0)). Proof. - intros condexpw condexpw2 alpha_inf beta_inf beta_sqr beta_bounded (* W0 *) Wrel. + intros condexpw condexpw2 alpha_inf beta_inf beta_sqr [ϵ beta_bounded] (* W0 *) Wrel. assert (svy1b: forall n : nat, IsFiniteExpectation prts (rvsqr (β n))). { @@ -4112,12 +4112,12 @@ Proof. assert (A3isfe' : Rbar_IsFiniteExpectation prts (fun ω : Ts => A3' ω)). { unfold A3', Series. - destruct (beta_bounded posreal1) as [N betaN]. + destruct (beta_bounded ) as [N betaN]. specialize (betaN (S N)). cut_to betaN; try lia. pose (btail := (rvplus (fun ω => sum_n (fun nn : nat => rvsqr (β nn) ω) N) - (const posreal1))). + (const (pos ϵ)))). assert (btail_rv : RandomVariable dom Rbar_borel_sa btail). { @@ -4173,8 +4173,8 @@ Proof. rewrite Lim_seq_plus. + unfold rvplus. rewrite Lim_seq_const. - replace (Finite (sum_n (fun nn : nat => rvsqr (β nn) ω) N + const posreal1 ω)) with - (Rbar_plus (sum_n (fun nn : nat => rvsqr (β nn) ω) N) (const posreal1 ω)) by reflexivity. + replace (Finite (sum_n (fun nn : nat => rvsqr (β nn) ω) N + const (pos ϵ) ω)) with + (Rbar_plus (sum_n (fun nn : nat => rvsqr (β nn) ω) N) (const (pos ϵ) ω)) by reflexivity. apply Rbar_plus_le_compat. { apply Rbar_le_refl. } now apply Rbar_lt_le.