diff --git a/coq/FHE/encode.v b/coq/FHE/encode.v index 0a19d246..7e640c58 100644 --- a/coq/FHE/encode.v +++ b/coq/FHE/encode.v @@ -2310,11 +2310,21 @@ Section norms. by rewrite canon_norm_inf_C_pow. Qed. + Lemma f_le_big_max n (i : 'I_n) (F : 'I_n -> R) : + (F i <= \big[Order.max/0]_(j < n) F j)%O. + Proof. + Admitted. + + Lemma canon_norm_inf_val n (p : {poly R}) i : (normc ((map_poly RtoC p).[odd_nth_roots n 0 i]) <= canon_norm_inf n p)%O. Proof. unfold canon_norm_inf, norm_inf. simpl. + generalize (f_le_big_max (2^n) i (fun i => normc (map_poly RtoC p).[odd_nth_roots n 0 i])); intros. + eapply Order.POrderTheory.le_trans. + - apply H. + - admit. Admitted. Lemma squeez0 (x : R) :