diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index 52161e33..f63ac131 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -6957,7 +6957,6 @@ Proof. Qed. Theorem Jaakkola_alpha_beta_unbounded_uniformly_W_alt (W : vector posreal (S N)) - (γ : R) (X XF α β : nat -> Ts -> vector R (S N)) {F : nat -> SigmaAlgebra Ts} (isfilt : IsFiltration F) @@ -6967,7 +6966,6 @@ Proof. {rvX0 : RandomVariable (F 0%nat) (Rvector_borel_sa (S N)) (X 0%nat)} {isl2 : forall k i pf, IsLp prts 2 (vecrvnth i pf (XF k))} {rvXF : forall k, RandomVariable (F (S k)) (Rvector_borel_sa (S N)) (XF k)} : - 0 < γ < 1 -> almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (α k ω)) -> almost prts (fun ω => forall k i pf, 0 <= vector_nth i pf (β k ω)) -> @@ -6978,11 +6976,13 @@ Proof. almost prts (fun ω => forall i pf, is_lim_seq (sum_n (fun k => vector_nth i pf (β k ω))) p_infty) -> (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (α n ω))))) -> (forall i pf, almost prts (fun ω => ex_series (fun n => Rsqr (vector_nth i pf (β n ω))))) -> - almost prts - (fun ω => - (forall k, - (pos_scaled_Rvector_max_abs ((vector_FiniteConditionalExpectation prts (filt_sub k) (XF k) (rv := vec_rvXF_I filt_sub XF k) (isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF) k)) ω) W) < - (γ * (pos_scaled_Rvector_max_abs (X k ω) W)))) -> + (exists (γ : R), + 0 < γ < 1 /\ + almost prts + (fun ω => + (forall k, + (pos_scaled_Rvector_max_abs ((vector_FiniteConditionalExpectation prts (filt_sub k) (XF k) (rv := vec_rvXF_I filt_sub XF k) (isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF) k)) ω) W) < + (γ * (pos_scaled_Rvector_max_abs (X k ω) W))))) -> (forall i pf, is_lim_seq'_uniform_almost (fun n ω => sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω) n) (fun ω => Lim_seq (sum_n (fun k => rvsqr (vecrvnth i pf (α k)) ω)))) -> @@ -7003,6 +7003,7 @@ Proof. is_lim_seq (fun m => vector_nth i pf (X m ω)) 0). Proof. intros. + destruct H6 as [γ [??]]. now apply (Jaakkola_alpha_beta_unbounded_uniformly_W W γ X XF α β isfilt filt_sub) with (isl2 := isl2) (vec_rvXF_I := vec_rvXF_I filt_sub XF) (vec_isfe := vec_isfe XF (vec_rvXF_I := vec_rvXF_I filt_sub XF)). Qed.